Pembangkitlistrik tenaga nuklir menghasilkan 20 metrik ton bahan bakar nuklir per tahun, dan dengan itu muncul banyak limbah nuklir. Jumlah itu melonjak menjadi sekitar 2.000 metrik ton per tahun. Bagian terbesar dari limbah ini mentransmisikan radiasi dan suhu tinggi, menyiratkan bahwa akan mengkonsumsi kompartemen yang memegangnya. Ini juga
11 Latar Belakang. Makalah ini kami buat demi mengkaji bagaimana "Kekurangan dan Kelebihan Reaktor Nukril Berserta Pembangunannya di Indonesia" dan guna melengakapi tugas bidang studi Fisika khususnya, dan juga sebagai penambahan ilmu dalam pengkajian tentang keunggulan dan kekurangan nuklir pada makalah ini kami
Makalah Fisika Modern Pembangkit Listrik Tenaga Nuklir PLTN Disusun untuk memenuhi salah satu tugas mata kuliah Fisika Modern Dosen pengampu Sinaga, Disusun Oleh Iif Latifah 1401257 DEPARTEMEN PENDIDIKAN FISIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA 2016 A. PENGERTIAN PLTN Pembangkit Listrik Tenaga Nuklir PLTN adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari. Daya yang dibangkitkan per unit pembangkit berkisar dari 40 MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya 600-1. Gambar 1 sketsa PLTN Pada dasarnya sistem kerja dari PLTN sama dengan pembangkit listrik konvensional, yaitu air diuapkan di dalam suatu ketel melalui pembakaran. Ulang yang dihasilkan dialirkan ke turbin yang akan bergerak apabila ada tekanan uap. Perputaran turbin digunakan untuk menggerakkan generator, sehingga menghasilkan tenaga listrik. Satu gram U-235 setara dengan 2650 batu bara. Pada PLTN panas yang digunakan untuk menghasilkan uap yang sama,dihasilkan dari reaksi pembelahan inti bahan fisil uranium dalam reactor nuklir. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi. Proses pembangkit yang menggunakan bahan bakar uranium ini tidak melepaskan partikel seperti CO2, SO2, atau NOx, juga tidak mengeluarkan asap atau debu yang mengandung logam berat yang dilepas ke lingkungan. Oleh karena itu PLTN merupakan pembangkit listrik yang ramah lingkungan. Limbah radioaktif yang dihasilkan dari pengoperasian PLTN, adalah berupa elemen bakar bekas dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa disimpan di lokasi PLTN. B. JENIS – JENIS PLTN 1. Pressurized Water Reactor PWR/Reaktor Air Tekan PWR adalah jenis reaktor daya nuklir yang menggunakan air ringan biasa sebagai pendingin maupun moderator neutron. Reaktor ini pertama sekali dirancang oleh Westinghouse Bettis Atomic Power Laboratory untuk kepentingan kapal perang, tetapi kemudian rancangan ini dijadikan komersial oleh Westinghouse Nuclear Power Division. Reaktor jenis ini merupakan jenis reaktor yang paling umum. Lebih dari 230 buah reaktor digunakan untuk menghasilkan listrik, dan beberapa ratus lainnya digunakan sebagai tenaga penggerak kapal. Gambar 2 Pressurized Water Reactor PWR Pada reaktor jenis PWR, aliran pendingin utama yang berada di teras reaktor bersuhu mencapai 325oC sehingga perlu diberi tekanan tertentu sekitar 155 atm oleh perangkat pressurizer sehingga air tidak dapat mendidih. Pemindah panas, generator uap, digunakan untuk memindahkan panas ke aliran pendingin sekunder yang kemudian mendidih menjadi uap air dan menggerakkan turbin untuk menghasilkan listrik. Uap kemudian diembunkan di dalam kondenser menjadi aliran pendingin sekunder. Aliran ini kembali memasuki generator uap dan menjadi uap kembali, memasuki turbin, dan demikian seterusnya. 2. Boiling Water Reactor BWR/Reaktor Air Didih Reaktor jenis BWR merupakan rancangan reaktor jenis air ringan sebagai pendingin dan moderator, yang juga digunakan di beberapa Pembangkit Listrik Tenaga Nuklir. Reaktor BWR pertama sekali dirancang oleh Allis-Chambers dan General Electric GE. Sampai saat ini, hanya rancangan General Electric yang masih bertahan. Reaktor BWR rancangan General Electric dibangun di Humboldt Bay di California. Reaktor ini mempunyai banyak persamaan dengan reaktor PWR; perbedaan yang paling kentara ialah pada reaktor BWR, uap yang digunakan untuk memutar turbin dihasilkan langsung oleh teras reaktor. Gambar 3 Skema Boiling Water Reactor Pada reaktor BWR hanya terdapat satu sirkuit aliran pendingin yang bertekanan rendah sekitar 75 atm sehingga aliran pendingin tersebut dapat mendidih di dalam teras mencapai suhu 285oC. Uap yang dihasilkan tersebut mengalir menuju perangkat pemisah dan pengering uap yang terletak di atas teras kemudian menuju turbin. Karena air yang berada di sekitar teras selalu mengalami kontaminasi oleh peluruhan radionuklida, maka turbin harus diberi perisai dan perlindungan radiasi sewaktu masa pemeliharaan. Kebanyakan zat radioaktif yang terdapat pada airtersebut beumur paro sangat singkat, misalnya N-16 dengan umur paro 7 detik sehingga ruang turbin dapat dimasuki sesaat setelah reaktor dipadamkan. Uap tersebut kemudian memasuki turbin-generator. Setelah turbin digerakkan, uap diembunkan di kondenser menjadi aliran pendingin, kemudian dipompa ke reaktor dan memulai siklus kembali. 3. Reaktor Air Didih Lanjut Advanced Boiling Water Reactor, ABWR ABWR adalah reaktor air didih lanjut, yaitu tipe modifikasi dari reaktor air didih yang ada pada saat ini. Perbaikan ditekankan pada keandalan, keselamatan, limbah yang rendah, kemudahan operasi dan faktor ekonomi. Perlengkapan khas ABWR yang mengalami perbaikan desain adalah 1 pompa internal, 2 penggerak batang kendali, 3 alat pengatur aliran uap, 4 sistem pendinginan teras darurat, 5 sungkup reaktor dari beton pra-tekan, 6 turbin, 7 alat pemanas untuk pemisah uap penurun kelembaban, 8 sistem kendali dijital dan lain-lain. 4. Reaktor Tabung tekan Reaktor tabung tekan merupakan reaktor yang terasnya tersusun atas pendingin air ringan ada juga air berat dan moderator air berat atau pendingin air ringan dan moderator grafit dalam pipa kalandria. Bahan pendingin dan bahan moderator dipisahkan oleh pipa tekan, sehingga bahan pendingin dan bahan moderator dapat dipilih secara terpisah. Pada kenyataannya terdapat variasi gabungan misalnya pendingin air ringan moderator air berat Steam-Generating Heavy Water Reactor,SGHWR, pendingin air berat moderator air berat Canadian Deuterium Uranium,CANDU, pendingin air ringan moderator grafit Channel Type Graphite-moderated Water-cooled Reactor, RBMK. Teras reaktor terdiri dari banyak kanal bahan bakar dan dideretkan berbentuk kisi kubus di dalam tangki kalandria, bahan pendingi mengalir masing-masing di dalam pipa tekan, energi panas yang timbul pada kanal bahan bakar diubah menjadi energi penggerak turbin dan digunakan pada pembangkit listrik. Disebut juga rektor nuklir tipe kanal. C. KOMPONEN PLTN 1. Reaktor Reaktor nuklir adalah tempat terjadinya reaksi pembelahan inti nuklir atau dikenal dengan reaksi fisi berantai yang terkendali. Gambar 4 Reaktor Bagian utama dari reaktor nuklir yaitu elemen bakar, perisai, moderator dan elemen kendali. Reaksi fisi berantai terjadi apabila inti dari suatu unsur dapat belah Uranium-235, Uranium-233 bereaksi dengan neutron termal/lambat yang akan menghasilkan unsur-unsur lain dengan cepat serta menimbulkan energi panas dan neutron-neutron baru. 2. Komponen Dasar Reaktor Nuklir Gambar 5 komponen dasar reaktor Elemen Bahan Bakar Elemen bahan bakar ini berbentuk batang-batang tipis dengan diameter kirakira 1 cm. Dalam suatu reaktor daya besar, ada ribuan elemen bahan bakar yang diletakkan saling berdekatan. Seluruh elemen bahan bakar dan daerah sekitarnya dinamakan teras reaktor. Umumnya, bahan bakar reaktor adalah uranium-235. Moderator Neutron Netron yang mudah membelah inti adalah netron lambat yang memiliki energi sekitar 0,04 eV atau lebih kecil, sedangkan netron-netron yang dilepaskan selama proses pembelahan inti fisi memiliki energi sekitar 2 MeV. Oleh karena itu, sebuah reaktor atom harus memiliki materaial yang dapat mengurangi kelajuan netron-netron yang energinya sangat besar sehingga netron-netron ini dapat dengan mudah membelah inti. Material yang memperlambat kelajuan netron dinamakan moderator. Moderator yang umum digunakan adalah air. Ketika netron berenergi tinggi keluar dari sebuah elemen bahan bakar, netron tersebut memasuki air di sekitarnya dan bertumbukan dengan molekul-molekul air. Netron cepat akan kehilangan sebagian energinya selama menumbuk molekul air moderator terutama dengan atom-atom hidrogen. Sebagai hasilnya netron tersebut diperlambat. Batang Kendali Jika keluaran daya dari sebuah reactor dikehendaki konstan, maka jumlah netron yang dihasilkan harus dikendalikan. Sebagaimana diketahui, setiap terjadi proses fisi ada sekitar 2 sampai 3 netron baru terbentuk yang selanjutnya menyebakan proses berantai. Batang kendalli terbuat dari bahan-bahan penyerap netron, seperti boron dan kadmium. Jika reaktor menjadi superkritis, batang kendali secara otomatis bergerak masuk lebih dalam ke dalam teras reaktor untuk menyerap kelebihan netron yang menyebabkan kondisi itu kembali ke kondisi kritis. Sebaliknya, jika reaktor menjadi subkritis batang kendali sebagian ditarik menjauhi teras reactor sehingga lebih sedikit netron yang diserap. Dengan demikian, lebih banyak netron tersedia untuk reaksi fisi dan reaktor kembali ke kondisi kritis. Untuk menghentikan operasi reaktor missal untuk perawatan batang kendali turun penuh sehingga seluruh netron diserap dan reaksi fisi berhenti. Pendingin Energi yang dihasilkan oleh reaksi fisi meningkatkan suhu reaktor. Suhu ini dipindahkan dari reaktor dengan menggunakan bahan pendingin misalnya air atau karbon dioksida. Bahan pendingin air disirkulasikan melalui system pompa, sehingga air yang keluar dari bagian atas teras reactor digantikan air dingin yang masuk melalui bagian bawah teras reactor. Perisai atau Wadah Terbuat dari bahan yang mampu menahan radiasi agar pekerja reactor dapat bekerja dengan aman dari radiasi. D. PRINSIP KERJA PLTN Proses kerja PLTN sebenarnya sama dengan proses kerja pembangkit listrik konvensional seperti pembangkit lisrtik tenaga uap PLTU, yang umumnya sudah dikenal secara luas. yang membedakan antara dua jenis pembangkit listrik itu adalah sumber panas yang digunakan. PLTN mendapatkan suplai panas dari reaksi nuklir, sedangkan PLTU mendapatkan panas dari pembakaran bahan bakar fosil seperti batubara atau minyak bumi. Reaktor daya dirancang untuk memproduksi energi listrik melalui PLTN. Uap bertekanan tinggi pada PLTU digunakan untuk memutar turbin. Tenaga gerak putar turbin ini kemudian diubah menjadi tenaga listrik dalam sebuah generator. Gambar 6 Proses pemutaran turbin Perbedaan PLTN dengan pembangkit lain terletak pada bahan bakar yang digunakan untuk menghasilkan uap, yaitu Uranium. Reaksi pembelahan fisi inti Uranium menghasilkan tenaga panas termal dalam jumlah yang sangat besar serta membebaskan 2 sampai 3 buah neutron. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi. Proses pembangkit yang menggunakan bahan bakar uranium ini tidak melepaskan partikel seperti CO2, SO, atau NOx, juga tidak melepaskan asap atau debu yang mengandung logam berat yang dilepas ke lingkungan. Oleh karena itu PLTN merupakan pembangkit listrik yang ramah lingkungan. Limbah radioaktif yang dihasilkan dari pengoperasian PLTN, adalah berupa elemen bakar bekas dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa disimpan dilokasi PLTN, sebelum dilakukan penyimpanan secara lestari. Gambar 7 Skema prinsip kerja PLTN E. STRUKTUR ATOM URANIUM DAN REAKSI FISI 1. Strukut Atom Uranium Sejatinya segala unsur yang terdapat di alam terbentuk dari kumpulan atom-atom. Ada 92 jenis atom yang telah didefinisikan hingga saat ini. Inti dari suatu atom terdiri atas proton yang bernilai positip dan neutron yang bersifat netral. Disekitar intinya terdapat elektron yang mengelilingi, biasanya berjumlah sama dengan proton dan terikat dengan gaya elektromagnetiknya. Jumlah proton pada atom menjadi ciri khas suatu jenis atom dan lebih dikenal dengan sebutan nomer atom, yang menentukan unsur kimia atom tersebut. Unsur uranium memiliki jumlah proton 92 buah atau dengan kata lain nomer atom Uranium adalah 92. Namun di alam, terdapat 3 jenis unsur yang memiliki jumlah proton 92 buah, masing-masing memiliki jumlah neutron sebanyak 142, 143, dan 148 buah. Unsur yang memiliki 143 buah neutron ini disebut dengan Uranium-235, sedangkan yang memiliki 148 buah neutron disebut dengan Uranium238. Suatu unsur yang memiliki nomer atom sama namun jumlah neutron yang berbeda biasa disebut dengan isotop. Gambar berikut adalah struktur dari atom Uranium dan tabel yang menjelaskan tentang isotopnya. Uranium yang terdapat di alam bebas sebagian besar adalah Uranium yang sulit bereaksi, yaitu Uranium-238. Hanya 0,7 persen saja Uranium yang mengandung isotop Uranium-235. Sedangkan bahan bakar Uranium yang digunakan di PLTN adalah Uranium yang kandungan Uranium-235 nya sudah ditingkatkan menjadi 3-5 %. 2. Reaksi Fisi Uranium Perlu diketahui bahwa reaksi fisi bisa terjadi disetiap inti atom dari suatu unsur tanpa terkecuali. Namun reaksi fisi yang paling mudah terjadi adalah reaksi pada inti atom Uranium. Uranium pun sama halnya, yang paling mudah terjadi reaksi adalah Uranium-235, sedangkan Uranium-238 memerlukan energi yang lebih besar agar dapat terjadi reaksi fisi ini. Reaksi fisi terjadi saat neutron menumbuk Uranium-235 dan saat itu pula atom Uranium akan terbagi menjadi 2 buah atom Kr dan Br. Saat terjadi reaksi fisi juga akan dihasilkan energi panas yang sangat besar. Dalam aplikasinya di PLTN, energi hasil reaksi fisi ini dijadikan sumber panas untuk menghasilkan uap air. Uap air yang dihasilkan digunakan untuk memutar turbin dan membuat generator menghasilkan listrik. Pada saat Uranium-235 ditumbuk oleh neutron, akan muncul juga 2-3 neutron baru. Kemudian neutron ini akan menumbuk lagi Uranium-235 lainnya dan muncul lagi 2-3 neutron baru lagi. Reaksi seperti ini akan terjadi terus menerus secara perlahan di dalam reaktor nuklir. Neutron yang terjadi akibat reaksi fisi sebenarnya bergerak terlalu cepat, sehingga untuk menghasilkan reaksi fisi yang terjadi secara berantai kecepatan neutron ini harus diredam dengan menggunakan suatu media khusus. Ada berbagai macam media yang digunakan sampai saat ini antara lain air ringan/tawar, air berat, atau pun grafit. Secara umum kebanyakan teknologi PLTN di dunia menggunakan air ringan Light Water Reactor, LWR. Perlu diperhatikan disini bahwa di dalam reaktor nuklir, bahan bakar Uranium yang digunakan dijaga agar tidak sampai terbakar atau mengeluarkan api. Sebisa mungkin posisi bahan bakarnya diatur sedemikian hingga agar nantinya hasil reaksi fisi ini masih bisa diolah kembali untuk dijadikan bahan bakar baru untuk digunakan pada teknologi PLTN di masa yang akan datang. Gambar 8 Proses terjadinya reaksi fisi 3. Besarnya Energi Reaksi Fisi Berikut ini adalah data tentang jumlah bahan bakar yang diperlukan dalam 1 tahun untuk masing-masing pembangkit listrik berkapasitas 1000 MW. Disini terlihat bahwa untuk 1 gram bahan bakar Uranium dapat menghasilkan energi listrik yang setara dengan 3 ton bahan bakar batubara, atau 2000 liter minyak bumi. Oleh karena energi yang dihasilkan Uranium sangat besar, bahan bakar PLTN juga dapat menghemat biaya di pengakutan dan penyimpanan bahan bakar pembangkit listrik. Gambar 9 Banyaknya bahan bakar yang diperlukan dalam 1 tahun F. PROSES PEMANFAATAN PANAS HASIL FISI UNTUK MENGHASILKAN ENERGI LISTRIK DI DALAM PLTN o Bahan bakar nuklir melakukan reaksi fisi sehingga dilepaskan energi dalam bentuk panas yang sangat besar. o Panas hasil reaksi nuklir tersebut dimanfaatkan untuk menguapkan air pendingin, bisa pendingin primer maupun sekunder bergantung pada tipe reaktor nuklir yang digunakan. o Uap air yang dihasilkan dipakai untuk memutar turbin sehingga dihasilkan energi gerak kinetik. o Energi kinetik dari turbin ini selanjutnya dipakai untuk memutar generator sehingga dihasilkan arus listrik. G. KELEMAHAN PLTN Berikut ini berberapa hal yang menjadi kekurangan PLTN 1 Risiko kecelakaan nuklir - kecelakaan nuklir terbesar adalah kecelakaan Chernobylyang tidak mempunyai containment building. 2 Limbah nuklir - limbah radioaktif tingkat tinggi yang dihasilkan dapat bertahan hinggaribuan tahun. H. KEUNTUNGAN PLTN Keuntungan PLTN dibandingkan dengan pembangkit daya utama lainnya adalah 1 Tidak menghasilkan emisi gas rumah kaca selama operasi normal gas rumah kacahanya dikeluarkan ketika Generator Diesel Darurat dinyalakan dan hanya sedikitmenghasilkan gas. 2 Tidak mencemari udara - tidak menghasilkan gas-gas berbahaya sepert karbon monoksida, sulfur dioksida, aerosol, mercury, nitrogen oksida, partikulate atau asap fotokimia. 3 Sedikit menghasilkan limbah padat selama operasi normal. 4 Biaya bahan bakar rendah - hanya sedikit bahan bakar yang diperlukan. 5 Ketersedian bahan bakar yang melimpah - sekali lagi, karena sangat sedikit bahanbakar yang diperlukan. 6 Baterai nuklir - lihat SSTAR. I. RESIKO PLTN 1. Radiasi Risiko utama yang berkaitan dengan tenaga nuklir timbul dari efek kesehatan dari radiasi. Radiasi ini terdiri dari partikel subatomik bepergian pada atau dekat kecepatan cahaya, - 186 000 mil per detik. Mereka dapat menembus jauh di dalam tubuh manusia di mana mereka dapat merusak sel-sel biologi dan dengan demikian memulai kanker. Jika mereka menyerang sel-sel seks, mereka dapat menyebabkan penyakit genetik pada keturunan. Radiasi terjadi secara alami di lingkungan kita, orang yang khas adalah, dan selalu telah terkena radiasi partikel setiap detik dari sumber-sumber alam, dan medis rata-rata X-ray melibatkan disambar 100 miliar. Meskipun hal ini mungkin tampak sangat berbahaya, tidak, karena kemungkinan untuk sebuah partikel radiasi memasuki tubuh manusia menyebabkan kanker atau penyakit genetik hanya satu kesempatan di 30 juta miliar 30 triliun. Teknologi tenaga nuklir menghasilkan bahan yang aktif dalam memancarkan radiasi dan karena itu disebut "radioaktif". Bahan-bahan ini dapat datang ke dalam kontak dengan orang-orang terutama melalui siaran kecil selama operasi rutin pabrik, kecelakaan di pembangkit listrik tenaga nuklir, kecelakaan dalam pengangkutan zat radioaktif, dan melarikan diri dari limbah radioaktif dari sistem kurungan. Kami akan membahas ini secara terpisah, tetapi semuanya diambil bersama, dengan kecelakaan dirawat probalistik, akhirnya akan mengekspos Amerika rata-rata sekitar 0,2% dari paparan dari radiasi alam. Karena radiasi alam diperkirakan menyebabkan sekitar 1% dari semua kanker, radiasi karena teknologi nuklir akhirnya harus meningkatkan risiko kanker kita dengan 0,002% satu bagian dalam mengurangi harapan hidup kita dengan kurang dari satu jam. Sebagai perbandingan, kehilangan harapan hidup kita dari teknologi pembangkit listrik yang kompetitif, pembakaran batu bara, minyak, atau gas, diperkirakan bervariasi antara 3 sampai 40 hari. Ada banyak kesalahpahaman tentang penyakit genetik akibat radiasi. Risiko yang agak kurang daripada resiko kanker, misalnya, antara mereka yang selamat A-bom Jepang dari Hiroshima dan Nagasaki, ada sekitar 400 kematian akibat kanker ekstra di antara orang dalam kelompok follow-up, tapi tidak ada tambahan penyakit genetik antara keturunan mereka. Karena tidak ada cara yang mungkin untuk sel dalam tubuh kita untuk membedakan antara radiasi alam dan radiasi dari industri nuklir, yang terakhir tidak dapat menyebabkan jenis baru penyakit genetik atau kelainan bentuk misalnya, manusia bionik, atau mengancam "ras manusia". Penyebab lain penyakit genetik termasuk tertunda orangtua anakanak dari orang tua yang lebih tua memiliki insiden yang lebih tinggi dan laki-laki memakai celana ini menghangatkan gonad, meningkatkan frekuensi mutasi spontan. Risiko genetik tenaga nuklir tersebut setara dengan orangtua menunda sebesar 2,5 hari, atau dari manusia memakai celana sebuah 8 jam ekstra per tahun. Banyak yang dapat dilakukan untuk mencegah penyakit genetik memanfaatkan teknologi yang tersedia saat ini, jika 1% dari pajak yang dibayar oleh industri nuklir digunakan untuk lebih menerapkan teknologi ini, 80 kasus penyakit genetik akan dihindari untuk setiap kasus yang disebabkan oleh industri nuklir. 2. Kecelakaan Reaktor Pembangkit tenaga nuklir desain strategi untuk mencegah kecelakaan dan mengurangi efek potensial mereka adalah "pertahanan mendalam" - jika sesuatu gagal, ada sistem back-up untuk membatasi kerugian yang, jika sistem yang juga harus gagal ada lagi kembali -up sistem untuk itu, dll, dll Tentu saja ada kemungkinan bahwa setiap sistem dalam rangkaian back-up mungkin gagal satu demi satu, tetapi kemungkinan untuk itu adalah sangat kecil. Media sering mempublikasikan kegagalan dari beberapa sistem tertentu di pabrik beberapa, menyiratkan bahwa itu adalah panggilan dekat "pada bencana”. Mereka benar-benar kehilangan titik pertahanan berlapis yang mudah menangani kegagalan tersebut Bahkan dalam kecelakaan Three Mile Island di mana setidaknya dua kegagalan tetap telah sangat diperparah oleh kesalahan manusia, dua baris pertahanan masih tidak dilanggar - dasarnya semua radioaktivitas masih disegel dalam bejana reaktor baja tebal, dan kapal yang disegel di dalam beton bertulang dan baja berat berbaris "penahanan" bangunan yang tidak pernah bahkan menantang itu jelas bukan panggilan dekat pada bencana bagi penduduk sekitar reaktor Chernobyl Soviet, dibangun di atas konsep desain yang jauh kurang aman, tidak punya struktur penahanan;. jika hal itu,. bencana yang seharusnya dihindari. Risiko dari kecelakaan reaktor diperkirakan oleh ilmu pengetahuan berkembang pesat dari "analisis risiko probabilistik" PRA. Sebuah PRA harus dilakukan secara terpisah untuk setiap pembangkit listrik dengan biaya $ 5 juta tapi kita memberikan hasil yang khas di sini bahan bakar Sebuah meleleh-down mungkin diharapkan sekali dalam tahun beroperasi reaktor. Dalam 2 dari 3 lelehan-down tidak akan ada kematian, pada 1 dari 5 akan ada lebih dari 1000 kematian, dan dalam 1 dari akan ada kematian. Rata-rata untuk semua kebocoran akan menjadi 400 kematian. Karena polusi udara dari pembakaran batu bara diperkirakan akan menyebabkan kematian per tahun, ada harus 25 meleleh-downs setiap tahun untuk tenaga nuklir harus sama berbahayanya dengan pembakaran batubara. Kematian saja dari polusi udara pembakaran batu bara tidak terlihat, tetapi yang sama juga berlaku bagi kematian akibat kanker dari kecelakaan reaktor. Dalam kecelakaan terburuk dipertimbangkan, diharapkan sekali dalam meleleh-downs sekali dalam 2 milyar tahun beroperasi reaktor, kematian kanker akan di antara 10 juta orang, meningkatkan risiko kanker mereka biasanya dari 20% rata-rata AS saat ini untuk 20,5 %. Ini jauh lebih kecil daripada variasi geografis - 22% di New England menjadi 17% di negaranegara Rocky Mountain. Sangat dosis radiasi yang tinggi dapat merusak fungsi tubuh dan mengakibatkan kematian dalam waktu 60 hari, tetapi seperti "terlihat" kematian yang diharapkan hanya 2% dari reaktor meleleh-down kecelakaan; akan ada lebih dari 100 di 0,2% dari kebocoran, dan 3500 di 1 dari meleleh-downs. Untuk saat ini, jumlah terbesar kematian terlihat dari pembakaran batubara dalam insiden polusi udara London, 1952 di mana terdapat 3500 kematian ekstra dalam satu minggu. Tentu saja kecelakaan nuklir yang hipotetis dan ada banyak jauh lebih buruk kecelakaan hipotesis dalam teknologi pembangkit listrik lain, misalnya, ada bendungan hidroelektrik di California yang mendadak kegagalan dapat menyebabkan kematian. 3. Limbah Radioaktif Produk limbah radioaktif dari industri nuklir harus diisolasi dari kontak dengan orang untuk jangka waktu yang sangat lama. Sebagian besar radioaktivitas yang terkandung dalam bahan bakar bekas, yang cukup kecil dalam volume dan karena itu dengan mudah ditangani dengan hati-hati. Ini "limbah tingkat tinggi" akan dikonversi ke bentuk batu-suka dan emplaced di habitat alami batuan, di bawah tanah. Umur rata-rata sebuah batu di lingkungan yang merupakan satu miliar tahun. Jika sampah berperilaku seperti batu lain, mudah terlihat bahwa limbah yang dihasilkan oleh satu pembangkit tenaga nuklir akhirnya akan, selama jutaan tahun jika tidak ada ditemukan obat untuk kanker, menyebabkan satu kematian dari 50 tahun beroperasi. Sebagai perbandingan, limbah dari tanaman pembakaran batubara yang berakhir di tanah akhirnya akan menyebabkan beberapa ribu kematian dari jumlah yang sama menghasilkan listrik. Volume yang jauh lebih besar jauh lebih sedikit radioaktif tingkat rendah limbah dari pembangkit nuklir akan dimakamkan di kedalaman dangkal biasanya 20 kaki dalam tanah. Jika kita menganggap bahwa bahan ini segera menjadi tersebar melalui tanah antara permukaan dan kedalaman air tanah walau tindakan rumit untuk menjaga integritas paket limbah dan berperilaku seperti materi yang sama yang hadir secara alami dalam tanah ada bukti ekstensif menegaskan perilaku seperti itu , jumlah korban tewas dari limbah tingkat rendah akan menjadi 5% dari yang dari limbah tingkat tinggi. J. SYARAT PLTN YANG AMAN Ketika syarat PLTN yang baik terpenuhi akan mendapatkan impek yang baik juga, berikut syarat yang harus dipenuhi yaitu 1. Air Sebagai Pemerlambat Neutron Moderator Panas yang dihasilkan dari reaksi pembelahan, oleh air yang bertekanan 160 atmosfir dan suhu 300 derajat Celsius secara terus menerus dipompakan ke dalam reaktor melalui saluran pendingan reaktor. Air yang bersirkulasi dalam saluran pendingin ini tidak hanya berfungsi sebagai pendingin saja melainkan juga bertindak sebagai moderator, yaitu sebagai medium yang dapat memperlambat neutron. Neutron cepat akan kehilangan sebagian energinya selama menumbuk atom-atom hidrogen. Setelah kecepatan neutron turun sampai 2000 m/detik atau sama dengan kecepatan molekul gas pada suhu 300 derajat Celsius, barulah ia mampu membelah inti atom uranium-235. Neutron yang telah diperlambat disebut neutron termal. 2. Reaksi Pembelahan Inti Berantai Terkendali Untuk mendapatkan keluaran termal yang mantap, perlu dijamin agar banyaknya reaksi pembelahan inti yang terjadi dalam teras reaktor dipertahankan pada tingkat tetap, yaitu 2 atau 3 neutron yang dihasilkan dalam reaksi itu hanya satu yang dapat meneruskan reaksi pembelahan. Neutron lainnya dapat lolos keluar reaktor, atau diserap oleh bahan lainnya tanpa menimbulkan reaksi pembelahan atau diserap oleh batang kendali. Batang kendali dibuat dari bahan-bahan yang menyerap neutron, sehingga jumlah neutron yang menyebabkan reaksi pembelahan dapat dikendalikan dengan mengatur keluar atau masuknya batang kendali ke dalam teras reaktor. Sehubungan dengan urain di atas perlu digarisbawahi bahwa a. Reaksi pembelahan berantai hanya dimungkinkan apabila ada moderator. b. Kandungan Uranium-235 di dalam bahan bakar nuklir maksimum adalah 3,2%. Kandungan ini kecil sekali dan terdistribusi secara merata dalam isotop Uranium-238, sehingga tidak mungkin terjadi reaksi pembelahan berantai secara tidak terkendali di dalamnya. 3. Keselamatan Nuklir Berbagai usaha pengamanan dilakukan untuk melindungi kesehatan dan keselamatan masyarakat, para pekerja reaktor, dan lingkungan PLTN. Usaha ini dilakukan untuk menjamin agar radioaktif yang dihasilkan reaktor nuklir tidak terlepas ke lingkungan baik selama operasi mapun jika terjadi kecelakaan. Tindakan proteksi dilakukan untuk menjamin agar PLTN dapat dihentikan dengan aman setiap waktu jika diinginkan dan tetap dapat dipertahankan dalam keadaan aman, yakni memperoleh pendinginan yang cukup. Untuk ini panas peluruhan yang dihasilkan harus dibuang dari teras reaktor, karena dapat menimbulkan bahaya akibat pemanasan lebih pada reaktor. 4. Keselamatan Terpasang Keselamatan terpasang dirancang berdasarkan sifat-sifat alamiah air dan uranium. Bila suhu dalam teras reaktor naik, jumlah neutron yang tidak tertangkap maupun yang tidak mengalami proses perlambatan akan bertambah, sehingga reaksi pembelahan berkurang. Akibatnya panas yang dihasilkan juga berkurang. Sifat ini akan menjamin bahwa teras reaktor tidak akan rusak walaupun sistem kendali gagal beroperasi. 5. Penghalang Ganda PLTN mempunyai sistem pengamanan yang ketat dam berlapislapis, sehingga kemungkinan terjadi kecelakaan maupun akibat yang ditimbulkan sangat kecil, Sebagai contoh, zat radioaktif yang dihasilkan selama reaksi pembelahan inti uranium sebagian besar > 99% akan tetap tersimpan di dalam matriks bahan bakar, yang berfungsi sebagai penghalang pertama, selama beroperasi aupun jika terjadi kecelakaan, kelongsong bahan bakar akan berperan sebagai penghalang kedua untuk mencegah terlepasnya zat radioaktif tersebut keluar kelongsong. Dalam hal zat radioaktif masih dapat keluar dari dalam kelongsong, masih ada penghalang ketiga yaitu sstem pendingin. Lepas dari sistem pendingin, masih ada penghalang keempat berupa bejana tekan dibuat dari baja dengan tebal ± 20 cm. Penghalang kelima adalah perisai beton dengan tebal 1,5 - 2 meter. Bila zat radioaktif itu masih ada yang lolos dari perisai beton, masih ada penghalang keenam, yaitu sistem pengungkung yang terdiri dari pelat baja setebal ± 7 cm dan beton setebal 1,5 - 2 meter yang kedap udara. Jadi selama operasi atau jika terjadi kecelakaan, zat radioaktif benar-benar tersimpan dalam reaktor dan tidak dilepaskan ke lingkungan. Kalaupun masih ada zat radioaktif yang terlepas jumlahnya sudah sangat diperkecil sehingga dampaknya terhadap lingkungan tidak berarti. Gambar 10 Skema pembelahan inti uranium K. REAKSI FUSI PADA PLTN Dalam reaksi fusi, dua atau lebih ringan inti atom bergabung membentuk inti tunggal yang lebih berat. Perubahan massa dalam proses adalah sumber energi nuklir. Fusi dalam inti matahari dan bintang-bintang lainnya menghasilkan energi radiasi mereka dengan menggabungkan dua atom hidrogen untuk menghasilkan atom helium. Dalam fusi, energi ambang yang sangat tinggi harus dicapai untuk menggabungkan inti atom, dan suhu yang diperlukan dalam jutaan derajat. Di alam, satu-satunya tempat di mana hal ini terjadi adalah dalam inti bintang. Superpanas plasma dan fokus daya laser adalah dua metode untuk mencapai energi ambang ini. Karena sesuatu yang dapat berfungsi sebagai media fusi harus begitu panas, itu harus diisolasi dari sekitar materi menggunakan medan magnet yang kuat atau penahanan inersia, yang merupakan prinsip di balik reaktor tokamak. Namun, fusi membutuhkan begitu banyak energi yang tak seorang pun belum bisa membangun sebuah reaktor yang menghasilkan energi yang dapat memenuhi reaksi awal fusi. Energi dapat diekstraksi dengan menggabungkan inti dalam proses yang disebut fusi .Kerugian energi fisi mencakup produk sampingan radioaktif dan hubungannya dengan senjata nuklir dan kebocoran. Dalam dekade terakhir ini, fisikawan nuklir telah mengembangkan cara yang lebih aman dari bangunan reaktor, termasuk metode untuk daur ulang produk sampingan radioaktif. Kemajuan ini telah menyebabkan pemerintah AS untuk memulai advokasi pembangunan reaktor nuklir lagi. DAFTAR PUSTAKA Wandha,Enggar. Artikel Pembangkit Listrik Tenaga Nuklir PLTN. [online]. Tersedia Diakses pada tanggal 13 Agustus 2016. Noname. Makalah Pembangkit Listrik Tenaga Nuklir PLTN. [online]. Tersedia Diakses pada tanggal 13 Agustus 2016. Susanto,Rudi. Makalah Pembangkit Listrik Tenaga Nuklir PLTN. [online]. Tersedia Diakses pada tanggal 13 Agustus 2016. Noname. Perbedaan Fusi dan Fisi Nuklir. [online]. Tersedia Diakses pada tanggal 13 Agustus 2016. Noname. Pembangkit Listrik Tenaga Nuklir. [online]. Tersedia 2016. Diakses pada tanggal 13 Agustus
MAKALAHPEMBANGKIT LISTRIK TENAGA NUKLIR Pada PLTN panas yang digunakan untuk menghasilkan uap yang sama, dihasilkan dari reaksi pembelahan inti bahan fisil (uranium) dalam reactor nuklir. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi.
BAB I PENDAHULUAN Latar Belakang Masalah energi merupakan salah satu isu penting yang sedang hangat dibicarakan. Semakin berkurangnya sumber energi, penemuan sumber energi baru, pengembangan energi-energi alternatif, dan dampak penggunaan energi minyak bumi terhadap lingkungan hidup menjadi tema-tema yang menarik dan banyak didiskusikan. Pemanasan global yang diyakini sedang terjadi dan akan memasuki tahap yang mengkhawatirkan disebut-sebut juga merupakan dampak penggunaan energi minyak bumi yang merupakan sumber energi utama saat ini. Dampak lingkungan dan semakin berkurangnya sumber energi minyak bumi memaksa kita untuk mencari dan mengembangkan sumber energi baru. Salah satu alternatif sumber energi baru yang potensial datang dari energi nuklir. Meski dampak dan bahaya yang ditimbulkan amat besar, tidak dapat dipungkiri bahwa energi nuklir adalah salah satu alternatif sumber energi yang layak diperhitungkan. Isu energi nuklir yang berkembang saat ini memang berkisar tentang penggunaan energi nuklir dalam bentuk bom nuklir dan bayangan buruk tentang musibah hancurnya reaktor nuklir di Chernobyl. Isu-isu ini telah membentuk bayangan buruk dan menakutkan tentang nuklir dan pengembangannya. Padahal, pemanfaatan yang bijaksana, bertanggung jawab, dan terkendali atas energi nuklir dapat meningkatkan taraf hidup sekaligus memberikan solusi atas masalah kelangkaan energi. Tujuan 1. Mengetahui pengertian energi nuklir 2. Mengetahui pemanfaatan nuklir sebagai energi alternatif 3. Mengetahui potensi energi nuklir di Indonesia 4. Mengetahui tingkat bahaya nuklir Rumusan Masalah 1. Apa pengertian energi nuklir; 2. Bagaimana pemanfaatan energi nuklir sebagai energi alternatif; 3. Bagaimana potensi energi nuklir di Indonesia; 4. Bagaimana tingkat bahaya nuklir; BAB II TINJAUAN PUSTAKA Pengertian Energi Nuklir Nuklir berarti bagian dari atau yang berhubungan dengan nukleus atom inti atom. Nuklir adalah sebutan untuk bentuk energi yang dihasilkan melalui reaksi inti, baik itu reaksi fisi pemisahan maupun reaksi fusi penggabungan. Sumber energi nuklir yang paling sering digunakan untuk PLTN adalah sebuah unsur radioaktif yang bernama Uranium. Reaksi fusi nuklir adalah reaksi peleburan dua atau lebih inti atom menjadi atom baru dan menghasilkan energi, juga dikenal sebagai reaksi yang bersih. Reaksi fusi juga menghasilkan radiasi sinar alfa, beta dan gamma yang sagat berbahaya bagi manusia. Unsur yang sering digunakan dalam reaksi fusi nuklir adalah Lithium dan Hidrogenterutama Lithium-6, Deuterium, Tritium. Reaksi fisi nuklir adalah reaksi pembelahan inti atom akibat tubrukan inti atom lainnya, dan menghasilkan energi dan atom baru yang bermassa lebih kecil, serta radiasi elektromagnetik. Unsur yang sering digunakan dalam reaksi fisi nuklir adalah Plutonium dan Uranium terutama Plutonium-239, Uranium-235. Gambar 1. Reaksi Fisi Pada reaksi fisi atom uranium U-235 hitam merah memiliki inti yang tidak stabil ketika ada neutron hitam yang ditembakkan pada inti atom tersebut, maka inti atom uranium akan membelah menjadi dua buah inti atom, yakni atom Barium Ba-141 dan atom Kripton Kr-92 serta tiga neutron warna hitam di kanan. Gambar 2. Reaksi Fusi Reaksi jenis ini tidak terjadi secara alamiah di permukaan bumi, namun merupakan prinsip kerja pembakaran Hidrogen di pusat matahari serta bintang-bintang. Terdapat banyak tipe reaksi fusi yang dapat terjadi di matahari yang sering disebut siklus protonproton, mulai dari penggabungan dua inti Hidrogen menjadi inti Deuterium hingga penggabungan inti Deuterium dan inti Tritium. Reaksi ini membutuhkan kondisi tertentu yang hanya terdapat di dalam inti matahari ataupun bintang-bintang, misalnya tekanan yang sangat tinggi. Di dalam inti matahari, tekanan yang sangat tinggi dihasilkan oleh gaya gravitasi. Gaya gravitasi pada pusat matahari haruslah sangat besar untuk mempertahankan strukturnya, mengingat komposisi matahari kebanyakan terdiri dari gas Hidrogen. Reaksi fusi di dalam teras reaktor membutuhkan Deuterium dan Tritium sebagai bahan bakar, yang jika bergabung pada kondisi tertentu akan menghasilkan inti Helium yang stabil disertai sebuah neutron yang membawa sebagian besar energi hasil fusi. Pemanfaatan Nuklir sebagai Energi Alternatif Prinsip Kerja Pembangkit Listrik Tenaga Nuklir PLTN Pembangkit Listrik Tenaga Nuklir adalah stasiun pembangkit listrik thermal dimana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan meskipun boiling water reaktor dapat trun hingga setengan dayanya ketika malam hari. Daya yang dibangkitkan perunit pembangkit berkisar dari 40 Mwe hingga 1000 MWe. Pada dasarnya sistem kerja dari PLTN sama denga pembangkit listrik konvensional, yaitu air diuapkan didalam suatu ketel melalui pembakaran. Uap yang dihasilkan dilarkan keturbin yang akan bergerak apabila ada tekana uap. Perputaran turbin digunakan untuk menggerakan generator, sehingga menghasilkan tenaga listrik. Pada PLTN panas yang digunakan untuk menghasilkan uap yang sama, dihasilkan dari reaksi pembelahan inti bahan fosil uranium dalam reaktor nuklir. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi. Proses pembangkit yang menggunakan bahan bakar uranium ini tidak melepaskan partikel seperti CO2, SO2, atau Nox juga tidak mengerluarkan asap atau debu yang mengandung logam berat yang dilepas ke lingkungan. Oleh karean itu PLTN merupakan pembangkit listrik yang ramah lingkungan. Limbah radioaktif yang dihasilkan dari pengoperasian PLTN adalah berupa elemen bakar bekas dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa di simpan di lokasi PLTN Jenis-Jenis Reaktor Nuklir LWR Light Water Reactor / Reaktor air Ringan Reaktor air ringan merupakan reaktor nuklir yang menggunakan H2O dengan kemurnian tinggi sebagai bahan moderator sekaligus pendingin reaktor. Reaktor jenis ini pertama kali di kembangkan di Amerika Serikat dan Rusia. Reaktor ini terdiri atas Reaktor Air tekan atau PWR Pressurized Water Reactor dan Reaktor Air Didih atau BWR Boiling Water Reactor dengan jumlah yang dioperasikan masing-masing mencapai 52 % dan 21,5 % dari total reaktor daya nuklir yang beroperasi. Sedang sisanya sebesar 26,5 % terdiri atas berbagai type reaktor daya lainnya. a. PWR Presured Water Reactor / Reaktor Air Tekan Reaktor sekaligus Air Tekan moderator. penggunaan dua sekunder. Panas juga menggunakan Bedanya macam dengan pendingin, yang dihasilkan H2O Reaktor yaitu sebagai Air pendingin pendingin Didih primer adalah dan dari reaksi fisi dipakai untuk memanaskan air pendingin primer. Dalam reaktor ini dilengkapi dengan alat pengontrol tekanan pessurizer yang dipakai untuk mempertahankan tekanan sistim pendingin primer. Pada pendigin primer memakai air dan dipanaskan inti sampai 600˚F tetapi air ini tidak mendidih karena berada didalam bejana yang bertekanan tinggi sebesar 2250 psi. Air ini dimasukkan kedalam pembangkit uap satu atau dua dengan tekanan 1000 psi, dan suhu 500˚F. Setelah melalui turbin uap dikembalikan ke kondensor. Sistim pressurizer terdiri atas sebuah tangki yang dilengkapi dengan pemanas listrik dan penyemprot air. Jika tekanan dalam teras reaktor berkurang, pemanas listrik akan memanaskan air yang terdapat di dalam tangki pressurizer sehingga terbentuklah uap tambahan yang akan menaikkan tekanan dalam sistim pendingin primer. Sebaliknya apabila tekanan dalam sistim penyemprot air pendingin primer bertambah, maka sistim akan mengembunkan sebagian uap sehingga tekanan uap berkurang dan sistim pendingin primer akan kembali ke keadaan semula. Tekanan pada sistim pendingin primer dipertahankan pada posisi 150 Atm untuk mencegah agar air pendingin primer tidak mendidih pada suhu sekitar 300 ºC. Pada tekanan udara normal, air akan mendidih dan menguap pada suhu 100 ºC. Dalam proses pembangkit kerjanya, uap air pendingin sehingga terjadi primer pertukaran dialirkan panas ke sistim antara sistim pendingin primer dan sistim pendingin sekunder. Dalam hal ini antara kedua pendingin tersebut hanya terjadi pertukaran panas tanpa terjadi kontak atau percampuran, karena antara kedua pendingin itu dipisahkan oleh sistim pipa. Terjadinya pertukaran panas menyebabkan air pendingin sekunder menguap. Tekanan pada sistim pendingin sekunder dipertahankan pada tekanan udara normal sehingga air dapat menguap pada suhu 100 ºC. Uap yang terbentuk di dalam sistim pembangkit uap ini selanjutnya dialirkan untuk memutar turbin. Pada Reaktor Air Tekan perputaran sistim pendingin primernya betulbetul tertutup, sehingga apabila terjadi kebocoran bahan radioaktif di dalam teras reaktor tidak akan menyebabkan kontaminasi pada turbin. Reaktor Air Tekan juga mempunyai keandalan operasi dan keselamatan yang sangat baik. Salah satu faktor penunjangnya adalah karena reaktor ini mempunyai koefisien reaktivitas negatif. Apabila terjadi kenaikan suhu dalam teras reaktor secara mendadak, maka daya reaktor akan segera turun dengan sendirinya. Namun karena menggunakan dua sistim pendingin, maka efisiensi thermalnya sedikit lebih rendah dibandingkan dengan Reaktor Air Didih. Gambar 3. Reaktor Air Tekan b. BWR Boiling Water Reactor / Reaktor Air Mendidih Reaktor jenis ini menggunakan air biasa H2O sebagai moderator maupun pendinginnya, sehingga termasuk kelompok reaktor air biasa / ringan. Pada reaktor air didih ini, panas hasil fisi dipakai secara langsung untuk menguapkan air pendingin dan uap yang terbentuk langsung dipakai untuk memutar turbin. Turbin tekanan tinggi menerima uap pada suhu sekitar 290 ºC dan tekanan sebesar 7,2 MPa. Sebagian uap diteruskan lagi ke turbin tekanan rendah. Dengan sistim ini dapat diperoleh efisiensi thermal sebesar 34 %. Efisiensi thermal ini menunjukkan prosentase panas hasil fisi yang dapat dikonversikan menjadi energi listrik. Setelah melalui turbin, uap tersebut akan mengalami proses pendinginan sehingga berubah menjadi air yang langsung dialirkan ke teras reaktor untuk diuapkan lagi dan seterusnya. Dalam reaktor ini digunakan bahan bakar U235 dengan tingkat pengayaannya 3-4 % dalam bentuk UO2. Gambar 4. Reaktor Air Didih . HWR Heavy Water Reactor / Reaktor Air Berat Reaktor ini mempergunakan air berat D2O, D = Deuterium sebagai moderatornya. Jenis reaktor ini sering disebut CANDU Canada Deuterium Uranium dan dikembangkan oleh Atomic Energi Commission dari Kanada. Bilamana pada reaktor air biasa moderator H2O berada dalam sebuah bejana, pada reaktor ini moderatornya D2O berada didalam pipa-pipa tekanan yang besar calandria. Selanjutnya dapat pula dikemukakan, bahwa sebuah reaktor air berat uranium dioksida alam UO2 dapat dipakai sebagai bahan bakar. Reaktor ini menggunakan bahan bakar uranium alam sehingga harus digunakan air berat yang penampang lintang serapannya terhadap neutron sangat kecil. Seperti halnya Reaktor Air tekan, Reaktor CANDU juga mempunyai sistim pendingin primer dan sekunder, pembangkit uap dan pengontrol tekanan untuk mempertahankan tekanan tinggi pada sistim pendingin primer. D2O dalam reaktor CANDU hanya dimanfaatkan sebagai sistim pendingin primer, sedang sistim pendingin sekundernya menggunakan H2O. Dalam pengoperasian reaktor CANDU, kemurnian D2O harus dijaga pada tingkat 95-99,8 %. Air berat merupakan bahan yang harganya sangat mahal dan secara fisik maupun kimia tidak dapat dibedakan secara langsung dengan H2O. Oleh sebab itu, perlu adanya usaha penanggulangan kebocoran D2O baik dalam bentuk uap maupun cairan. Aliran ventilasi dari ruangan dilakukan secara tertutup dan selalu dipantau tingkat kebasahannya, sehingga kemungkinan adanya kebocoran D2O dapat diketahui secara dini. Gambar 5. Reaktor Air Berat Keuntungan dan Kekurangan Pembangkit Listrik Tenaga Nuklir Keuntungan PLTN 1. Tidak menghasilkan emisi gas rumah kaca. Gas rumah kaca akan dihasilkan ketika genarot diesel darurat dinyalakan. 2. Tidak mencemari udara. Tidak menghasilkan gas-gas berbahaya seperti karbon monoksida, sulfur dioksida, aerosol, merkuri, nitrogen oksida, partikulat, atau asap fotokimia. 3. Sedikit menghasilkan limbah padat 4. Biaya bahan bakar rendah Hanya sedikit bahan bakar yang diperlukan 5. Ketersediaan bahan bakar yang melimpah Kekurangan PLTN 1. resiko kecelakaan nuklir Kecelakaan nuklir terbesar adalah kecelakaan Chernobylcontainment building. Bencana Chernobyl adalah kecelakaan nuklir yang terjadi pada tanggal 26 April 1986 di Pembangkit Listrik Tenaga Nuklir Chernobyl di Republik Sosialis Soviet waktu itu bagian dari Uni Soviet, sekarang di Ukraina. Ini merupakan kecelakaan nuklir terburuk dalam ledakan pada Pembangkit Listrik Tenaga Nuklir yang menggemparkan dunia, chernobyl , Ukraina. Akibat kejadian tersebut sampai sekarang kota chernobyl masih dijuluki sebagai kota mati. Penyebab terjadinya sudah diketahui dan dampak yang ditimbulkan begitu mengerikan. reaktor nomor empat di PLTN Chernobyl yang terletak di Uni Soviet di dekat Pripyat di Ukraina meledak. Akibatnya, kebakaran dan radioaktif menyebar. Tragedi ini menyebabkan kontaminasi radiasi meluas di Ukraina, hingga sampai ke Belarus dan Rusia. Butuh dua hari bagi Uni Soviet untuk membeberkan informasi mengenai ledakan ini kepada publik. Tragedi ini juga membuka mata dunia, melalui Badan Energi Atom Internasional IAEA, bahwa dunia perlu menjalin kerjasama dan berbagai informasi dalam penggunaan energi nuklir. Hingga saat ini, rehabilitasi untuk korban-korban Chernobyl masih terus berlanjut. Rusia, Ukraina dan Belarus masih terus dibebani dengan biaya dekontaminasi dan perawatan kesehatan bagi korban. Korban tewas tragedi ini 50 orang, terdiri dari para staf reaktor dan tim penyelamat. Kecelakaan ini merupakan salah satu bencana nuklir yang terdahsyat sampai saat ini. Kota ini seperti terhenti pada 1986 dan kini seperti museum hidup. Semua dibiarkan dan ditinggalkan, tumbuh sendiri selama 26 tahun. Chernobil Pripyat seperti tersembunyi di dalam belantara. Tidak ada kepastian berapa sebenarnya jumlah korban akibat tragedi Chernobyl. Organisasi Kesehatan Dunia WHO menyebut angka orang yang menjadi korban akibat radiasi. Organisasi lingkungan hidup Greenpeace memperkirakan jumlah korban bisa mencapai orang. Ratusan dari ribuan orang berhasil dievakuasi. PBB menyatakan, sekitar 7 juta orang masih hidup di wilayah berbahaya karena memiliki tingkat radiasi di luar ambang batas aman. Hasil yang didapat sampai saat ini adalah kanker ganas pada anak-anak yang baru lahir, kematian dalam jangka waktu yang diprediksi bagi para pekerja saat membereskan reruntuhan ledakan di kota itu, mutasi genetik luar biasa turun temurun yang menyebar di hampir sebagian dari wilayah Eropa. Tabel 3 Beberapa kecelakaan yang pernah terjadi pada PLTN di beberapa lokasi Industri di dunia yang berkisaran pada tahun 1976 – 1986. 2. Limbah Radioaktif Limbah radioaktif adalah jenis limbah yang mengandung atau terkontaminasi radionuklida pada konsentrasi atau aktivitas yang melebihi batas yang diijinkan Clearance level yang ditetapkan oleh Badan Pengawas Tenaga Nuklir. Limbah radioaktif tingkat tinggi yang dihasilkan dapat bertahan hingga ribuan tahun. Potensi Energi Nuklir di Indonesia Sejarah Pembangkit Listrik Tenaga Nuklir di Indonesia Sejarah pemanfaatan energi nuklir melalui Pusat Listrik Tenaga Nuklir PLTN dimulai beberapa saat setelah tim yang dipimpin Enrico Fermi berhasil memperoleh reaksi nuklir berantai terkendali yang pertama pada tahun 1942. Reaktor nuklirnya sendiri sangat dirahasiakan dan dibangun di bawah stadion olah raga Universitas Chicago. Mulai saat itu manusia berusaha mengembangkan pemanfaatan sumber tenaga baru tersebut. Namun pada mulanya, pengembangan pemanfaatan energi nuklir masih sangat terbatas, yaitu baru dilakukan di Amerika Serikat dan Jerman. Tidak lama kemudian, Inggris, Perancis, Kanada dan Rusia juga mulai menjalankan program energi nuklirnya. Listrik pertama yang dihasilkan dari PLTN terjadi di Idaho, Amerika Serikat, pada tahun 1951. Selanjutnya pada tahun 1954 PLTN skala kecil juga mulai dioperasikan di Rusia. PLTN pertama di dunia yang memenuhi syarat komersial dioperasikan pertama kali pada bulan Oktober 1956 di Calder Hall, Cumberland. Sistim PLTN di Calder Hall ini terdiri atas dua reaktor nuklir yang mampu memproduksi sekitar 80 juta Watt tenaga listrik. Sukses pengoperasian PLTN tersebut telah mengilhami munculnya beberapa PLTN dengan model yang sama di berbagai tempat. Proses rencana pembangunan PLTN di Indonesia cukup panjang. Tahun 1972, telah dimulai pembahasan awal dengan membentuk Komisi Persiapan Pembangunan PLTN. Komisi ini kemudian melakukan pemilihan lokasi dan tahun 1975 terpilih 14 lokasi potensial, 5 di antaranya terletak di Jawa Tengah. Lokasi tersebut diteliti Badan Tenaga Nuklir Nasional BATAN bekerjasama dengan NIRA dari Italia. Dari keempat belas lokasi tersebut, 11 lokasi di pantai utara dan 3 lokasi di pantai selatan. pemanfaatan Tenaga Nuklir di Indonesia Berlawanan dengan kebanyakan pendapat orang, tenaga nuklir memberikan banyak manfaat bagi peradaban manusia. Berbagai macam penggunaan tenaga nuklir muncul dalam kehidupan kita. Selama lebih dari seratus tahun, tenaga nuklir telah dikembangkan untuk memenuhi kebutuhan dasar manusia dan untuk meningkatkan kesejahteraan masyarakat. Kontribusi nyata tampak dalam peningkatan kesehatan masyarakat. Dalam bidang pertanian, kita menggunakan teknik nuklir untuk menghasilkan varietas padi unggul dan murah, sehingga mampu memenuhi kebutuhan nutrisi kita. Selain itu, teknologi radiasi juga telah banyak digunakan industri, terutama untuk memeriksa volume produk minuman dalam kemasan, ketebalan kertas, kualitas pipa dan lain sebagainya. Sinar radiasi juga dapat digunakan sebagai teknik perunut, diagnosa proses industri, analisa komposisi dan uji bahan tak rusak. Radiasi sinar gamma juga banyak digunakan untuk membasmi bakteria dalam proses sterilisasi makanan. Di berbagai belahan dunia, tenaga nuklir telah dan akan menjadi alternatif penting dalam menyediakan tenaga listrik tanpa menghasilkan gas rumah kaca, sehingga bisa mengurangi efek rumah kaca di planet kita ini. Memandang hal di atas, pemerintah Indonesia, bersama dengan Dewan Perwakilan Rakyat, membuat UU No 10 Tahun 1997 tentang Ketenaganukliran, yang menunjukkan pentingnya energi nuklir bagi kesejahteraan kita dan perlunya keselamatan dalam penggunaanya. Usaha untuk meningkatkan manfaat dari energi nuklir dilaksanakan oleh Badan Tenaga Nuklir Nasional BATAN, sedangkan Badan Pengawas Tenaga Nuklir BAPETEN diberikan wewenang dan tanggung jawab melalui tugas pengawasan untuk meminimalisasi resiko yang berkaitan dengan penggunaan tenaga nuklir di Indonesia. Pengawasan penggunaan tenaga nuklir dimaksudkan untuk menjamin pemakaian yang baik dan benar dengan tetap menjaga penggunaan khusus untuk tujuan damai dan memberikan manfaat dan kesejahteraan pada masyarakat seluas-luasnya. tingkat bahaya nuklir International Atomic Energy Agency IAEA telah memperkenalkan 8 level skala kejadian kecelakaan nuklir agar menjadi informasi yang tepat terhadap masyarakat luas. Level level tersebut dikatagorikan berdasarkan tingkatan pengaruh/efek baik dalam PLTN itu sendiri maupun keluar PLTN. Delapan level tersebut adalah Level 7 Level ini mengkatagorikan kecelakaan nuklir yang mengakibatkan efek yang sangat besar terhadap kesehatan dan lingkungan di dan sekitar PLTN. Yang termasuk dalam level ini adalah kecelakaan Chernobyl yang terjadi di Negara bekas Uni Soviet, sekarang Ukraina pada tahun 1986. Level ini bisa disamakan dengan kasus kecelakaan non-nuklir di Bhopal, India pada tahun 1984 dimana ribuan orang dikabarkan meninggal dunia. Level 6 Pada level ini, kecelakaan nuklir diindikasikan dengan keluarnya radioaktif yang cukup signifikan, baik PLTN maupun kegiatan industri yang berbasis raioaktif. Contohnya adalah kecelakaan di Mayak, bekas Negara Uni Soviet pada tahun 1957. Level 5 Level ini mengindikasikan kecelakaan yang mengeluarkan zat radioaktif yang terbatas, sehingga memerlukan pengukuran lebih lanjut. Contoh dari level ini yaitu kecelakaan/kebakaran pada rekator nuklir di Windscale, Inggris tahun 1957. Contoh lainnya yaitu kecelakaan di Three Mile Island yang merusak inti reaktor pada tahun 1979 Level 4 Level ini mengelompokkan kecelakaan nuklir yang mengakibatkan efek yang kecil terhadap lingkungan sekitar, inti reaktor dan pekerja sesuai dengan batas limit yang diizinkan. Beberapa contoh kejadian kecelakaan dalam level ini yaitu kecelakaan pada Sellafield Inggris, terjadi sebanyak 5 kali dari 1955 sampai 1979 PLTN Saint-Laurent Perancis tahun 1980 Buenos Aires Argentina tahun 1983 PLTN Tokaimura Jepang tahun 1999. Level 3 Kecelakaan yang dikelompokkan dalam level ini yaitu kecelakaan yang mengakibatkan efek yang sangat kecil dimana masih dibawah level/batas yang diizinkan, namun tidak ada perangkat keselamatan yang memadai. Contoh dari kecelakaan level ini yaitu kecelakaan pada THORP plant Sellafield di Inggris tahun 2005. Level 2 Kecelakaan pada level ini tidak mengakibatkan efek apapun keluar larea, namun tetap ada kontaminasi didalam area. Level ini juga mengindikasikan kecelakaan yang disebabkan oleh kegagalan untuk memenuhi syarat syarat keselamatan yang seharusnya ada. Contoh kecelakaan dalam level ini adalah kecelakaan pada PLTN Forsmark Swedia pada bulan Juli 2006 yang lalu. Level 1 Pada level ini, dikatagorikan kecelakaan yang merupakan anomaly dari pengoperasian sistem . Level 0 Pada level ini tidak memerlukan tingkat keselamatan yang signifikan dan relevan. Disebut juga sebagai “out of scale”. Anonim. 2009. “Reaksi Fusi dan Reaksi Fisi”. [15 Oktober 2014] Thadmin, Irham dkk. 2012. “Pembangkit Listrik Tenaga Nuklir”. [ 15 Oktober 2014] Julio. 2013. “Ledakan Reaktor Nuklir di Chernobyl”. [15 Oktober 2014]
Υվасрοж ачθдр ожуρገյуጳ
ኾխսօሁաሸየз մጳз
Զиж анዖпጥվեшу ε
ዎ ибр
Иլዖкаքи ውаζըв
Х ርохቁֆοклеփ եμεвимаչሸ
Йጬжеնизвиሧ у еጤинοጌι
Вፒтеձምλосл ивсешиφደгу
Еኇ ωмቺላαβፁղо
Աժቇሣሾ глωз
ሻլαпун ժաςυዡу
ጅሔиኅаниք гозо
Οц хожитвефጿд
Էбеጄаσ քυφուкоψ свաጨωйед
Оձ ехущыдрοтո
ክቲዚиβυчоኚ ፑςисխδοጭ ем
ProsidingSeminar Nasi onal Infrastruk tur Energi Nuklir 2019 Pontianak , 10 Oktober 2019 11 ISSN: 2621 -3125 Makalah ini menyajikan perkembangan energi terbarukan dari yang sangat tinggi; untuk alasan ini, pembangkit listrik tenaga panas bumi mampu memasok listrik beban-dasar, serta menyediakan layanan tambahan untuk fleksibilitas
MakalahPembangkit Listrik Tenaga Nuklir. BAB I. PENDAHULUAN. A. LATAR BELAKANG. Masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang dijatuhkan diHiroshima dan Nagasaki dalam Perang Dunia II tahun 1945. Sedemikian dahsyatnya akibat yang ditimbulkan oleh bom tersebut sehingga pengaruhnya masih dapat dirasakan sampaisekarang
BAB I PENDAHULUAN A. LATAR BELAKANG Masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang dijatuhkan diHiroshima dan Nagasaki dalam Perang Dunia II tahun 1945. Sedemikian dahsyatnya akibat yang ditimbulkan oleh bom tersebut sehingga pengaruhnya masih dapat dirasakan samping sebagai senjata pamungkas yang dahsyat, sejak lama orang telah memikirkan bagaimana cara memanfaatkan tenaga nuklir untuk kesejahteraan umat manusia. Sampai saat ini tenaga nuklir, khususnya zat radioaktif telah dipergunakan secara luas dalamberbagai bidang antara lain bidang industri, kesehatan, pertanian, peternakan, sterilisasi produk farmasi dan alat kedokteran, pengawetan bahan makanan, bidang hidrologi, yang merupakan aplikasi teknik nuklir untuk non energi. Salah satu pemanfaatan teknik nuklir dalam bidang energi saat ini sudah berkembang dan dimanfaatkan secara besar-besaran dalam bentuk Pembangkit Listrik Tenaga nuklir PLTN, dimana tenaga nuklir digunakan untuk membangkitkan tenaga listrik yang relatif murah, aman dan tidak mencemari lingkungan. Pemanfaatan tenaga nuklir dalam bentuk PLTN mulai dikembangkan secara komersial sejak tahun 1954. Pada waktu itu di Rusia USSR, dibangun dan dioperasikan satu unit PLTN air ringan bertekanan tinggi VVER = PWR yang setahun kemudian mencapai daya 5 Mwe. Pada tahun 1956 di Inggris dikembangkan PLTN jenis Gas Cooled Reactor GCR + Reaktor berpendingin gas dengan daya 100 Mwe. Pada tahun 1997 di seluruh dunia baik di negara maju maupun negara sedang berkembang telah dioperasikan sebanyak 443 unit PLTN yang tersebar di 31 negara dengan kontribusi sekitar 18 % dari pasokan tenaga listrik dunia dengan total pembangkitan dayanya mencapai Mwe dan 36 unit PLTN sedang dalam tahap kontruksi di 18 negara. Seiring dengan krisis energi yang sedang menimpa Indonesia saat ini yang ditandai dengan semakin menipisnya cadangan minyak yang dimiliki Indonesia, maka pemerintah berniat membangun PLTN Pembangkit Listrik Tenaga Nuklir di Indonesia. Pemerintah merasa pembangkit-pembangkit listrik yang sudah ada sekarang dirasa masih kurang untuk memenuhi konsumsi listrik di Indonesia. Pengertian dari PLTN sendiri adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. Cara kerja PLTN tidak jauh dengan PLTU Pembangkit Listrik Tenaga Uap. Bedanya pada PLTN energi panas yang dihasilkan berasal dari reaksi nuklir. Panas yang dihasilkan dari reaksi nuklir ini digunakan untuk menguapkan air pendingin. Uap ini digunakan untuk menggerakkan turbin sehingga diperoleh energi kinetik. Energi kinetik yang dihasilkan digunakan untuk memutar generator yang akhirnya menghasilkan energi listrik. Namun masih terdapat pro dan kontra dalam masyarakat mengenai rencana pemerintahan karena itu pemerintah harus memberikan penyuluhan mengenai teknologi nuklir kepada masyarakat. Selain itu pemerintah juga harus menerapkan standar keamanan yang ketat terhadap PLTN yang akan didirikan. B. TUJUAN 1. Meningkatkan pengetahuan mahasiswa tentang PLTN. 2. Menambah cara berfikir mahasiswa untuk menganalisis suatu permasalahan. 3. Agar mahasiswa sapat mengaplikasikan dalam kehidupan bermasyarakat. C. RUMUSAN MASALAH Dalam penulisan makalah ini ada beberapa permasalahan yang perlu dibahas antara lain 1. Bagaimana prinsip kerja dari PLTN? 2. Bagaimana proses pemanfaatan panas hasil fisi untuk menghasilkan energi listrik di dalam PLTN? 3. Keuntungan dan kerugian dari PLTN ? D. METODE PENULISAN Dalam penulisan makalah ini, metode penulisan yang digunakan adalah metode studi pustaka, yaitu metode dan suber penulisannya versumber dari buku-buku dan data dari internet E. SISTEMATIKA PENULISAN Dalam penulisan laporan ini sistematika penulisan yang digunakan adalah Kata Pengantar Daftar Isi Bab I berisi Latar belakang, Tujuan, Rumusan Masalah, Metode Penulisan, Sistematika Penulisan Bab II berisi Landasan Teori Pembangkit Listrik Tenaga Nuklir, jenis-jenis Pembangkit listrik Tenaga Nuklir PLTN Bab III Pembahasan, Prinsip Kerja PLTN, Proses pemanfaatan panas hasil fisi untuk menghasilkan energi listrik di dalam PLTN, keuntungan dan kekurangan PLTN. BAB II TINJAUAN PUSTAKA A. LANDASAN TEORI Pembangkit Listrik Tenaga Nuklir PLTN adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari. Daya yang dibangkitkan per unit pembangkit berkisar dari 40 MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya 600-1. Pada dasarnya sistem kerja dari PLTN sama dengan pembangkit listrik konvensional, yaitu air diuapkan di dalam suatu ketel melalui pembakaran. Ulang yang dihasilkan dialirkan ke turbin yang akan bergerak apabila ada tekanan uap. Perputaran turbin digunakan untuk menggerakkan generator, sehingga menghasilkan tenaga listrik. Satu gram U-235 setara dengan 2650 batu bara. Pada PLTN panas yang digunakan untuk menghasilkan uap yang sama, dihasilkan dari reaksi pembelahan inti bahan fisil uranium dalam reactor nuklir. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi. Proses pembangkit yang menggunakan bahan bakar uranium ini tidak melepaskan partikel seperti CO2, SO2, atau NOx, juga tidak mengeluarkan asap atau debu yang mengandung logam berat yang dilepas ke lingkungan. Oleh karena itu PLTN merupakan pembangkit listrik yang ramah lingkungan. Limbah radioaktif yang dihasilkan dari pengoperasian PLTN, adalah berupa elemen bakar bekas dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa disimpan di lokasi PLTN. B. JENIS-JENIS PEMBANGKIT LISTRIK TENAGA NUKLIR PLTN 1. Pressurized Water Reactor PWR/Reaktor Air Tekan PWR adalah jenis reaktor daya nuklir yang menggunakan air ringan biasa sebagai pendingin maupun moderator neutron. Reaktor ini pertama sekali dirancang oleh Westinghouse Bettis Atomic Power Laboratory untuk kepentingan kapal perang, tetapi kemudian rancangan ini dijadikan komersial oleh Westinghouse Nuclear Power Division. Reaktor jenis ini merupakan jenis reaktor yang paling umum. Lebih dari 230 buah reaktor digunakan untuk menghasilkan listrik, dan beberapa ratus lainnya digunakan sebagai tenaga penggerak kapal. Gambar 3 Skema Reaktor Pressurized Water Reactor PWR Pada reaktor jenis PWR, aliran pendingin utama yang berada di teras reaktor bersuhu mencapai 325oC sehingga perlu diberi tekanan tertentu sekitar 155 atm oleh perangkat pressurizer sehingga air tidak dapat mendidih. Pemindah panas, generator uap, digunakan untuk memindahkan panas ke aliran pendingin sekunder yang kemudian mendidih menjadi uap air dan menggerakkan turbin untuk menghasilkan listrik. Uap kemudian diembunkan di dalam kondenser menjadi aliran pendingin sekunder. Aliran ini kembali memasuki generator uap dan menjadi uap kembali, memasuki turbin, dan demikian seterusnya. 2. Boiling water reactor BWR/Reaktor Air Didih Reaktor jenis BWR merupakan rancangan reaktor jenis air ringan sebagai pendingin dan moderator, yang juga digunakan di beberapa Pembangkit Listrik Tenaga Nuklir. Reaktor BWR pertama sekali dirancang oleh Allis-Chambers dan General Electric GE. Sampai saat ini, hanya rancangan General Electric yang masih bertahan. Reaktor BWR rancangan General Electric dibangun di Humboldt Bay di California. Reaktor ini mempunyai banyak persamaan dengan reaktor PWR; perbedaan yang paling kentara ialah pada reaktor BWR, uap yang digunakan untuk memutar turbin dihasilkan langsung oleh teras reaktor. Gambar 4 Skema Reaktor Boiling Water Reactor BWR Pada reaktor BWR hanya terdapat satu sirkuit aliran pendingin yang bertekanan rendah sekitar 75 atm sehingga aliran pendingin tersebut dapat mendidih di dalam teras mencapai suhu 285oC. Uap yang dihasilkan tersebut mengalir menuju perangkat pemisah dan pengering uap yang terletak di atas teras kemudian menuju turbin. Karena air yang berada di sekitar teras selalu mengalami kontaminasi oleh peluruhan radionuklida, maka turbin harus diberi perisai dan perlindungan radiasi sewaktu masa pemeliharaan. Kebanyakan zat radioaktif yang terdapat pada air tersebut beumur paro sangat singkat, misalnya N-16 dengan umur paro 7 detik sehingga ruang turbin dapat dimasuki sesaat setelah reaktor dipadamkan. Uap tersebut kemudian memasuki turbin-generator. Setelah turbin digerakkan, uap diembunkan di kondenser menjadi aliran pendingin, kemudian dipompa ke reaktor dan memulai siklus kembali seperti di atas. 3. Reaktor Air Didih Lanjut Advanced Boiling Water Reactor, ABWR ABWR adalah reaktor air didih lanjut, yaitu tipe modifikasi dari reaktor air didih yang ada pada saat ini. Perbaikan ditekankan pada keandalan, keselamatan, limbah yang rendah, kemudahan operasi dan faktor ekonomi. Perlengkapan khas ABWR yang mengalami perbaikan desain adalah 1 pompa internal, 2 penggerak batang kendali, 3 alat pengatur aliran uap, 4 sistem pendinginan teras darurat, 5 sungkup reaktor dari beton pra-tekan, 6 turbin, 7 alat pemanas untuk pemisah uap penurun kelembaban, 8 sistem kendali dijital dan lain-lain. 4. Reaktor tabung tekan Reaktor tabung tekan merupakan reaktor yang terasnya tersusun atas pendingin air ringan ada juga air berat dan moderator air berat atau pendingin air ringan dan moderator grafit dalam pipa kalandria. Bahan pendingin dan bahan moderator dipisahkan oleh pipa tekan, sehingga bahan pendingin dan bahan moderator dapat dipilih secara terpisah. Pada kenyataannya terdapat variasi gabungan misalnya pendingin air ringan moderator air berat Steam-Generating Heavy Water Reactor, SGHWR, pendingin air berat moderator air berat Canadian Deuterium Uranium, CANDU, pendingin air ringan moderator grafit Channel Type Graphite-moderated Water-cooled Reactor, RBMK. Teras reaktor terdiri dari banyak kanal bahan bakar dan dideretkan berbentuk kisi kubus di dalam tangki kalandria, bahan pendingin mengalir masing-masing di dalam pipa tekan, energi panas yang timbul pada kanal bahan bakar diubah menjadi energi penggerak turbin dan digunakan pada pembangkit listrik. Disebut juga rektor nuklir tipe kanal. BAB III PEMBAHASAN 1. Prinsip kerja dari PLTN Prinsip kerja PLTN sebenarnya mirip dengan pembangkit listrik lainnya, misalnya Pembangkit Listrik Tenaga Uap PLTU. Yang membedakan antara dua jenis pembangkit listrik itu adalah sumber panas yang digunakan. PLTN mendapatkan suplai panas dari reaksi nuklir, sedang PLTU mendapatkan suplai panas dari pembakaran bahan bakar fosil seperti batubara atau minyak bumi. Uap bertekanan tinggi pada PLTU digunakan untuk memutar turbin. Tenaga gerak putar turbin ini kemudian diubah menjadi tenaga listrik dalam sebuah generator. Perbedaan PLTN dengan pembangkit lain terletak pada bahan bakar yang digunakan untuk menghasilkan uap, yaitu Uranium. Reaksi pembelahan fisi inti Uranium menghasilkan tenaga panas termal dalam jumlah yang sangat besar serta membebaskan 2 sampai 3 buah neutron. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi. Proses pembangkit yang menggunakan bahan bakar uranium ini tidak melepaskan partikel seperti CO2, SO, atau NOx, juga tidak melepaskan asap atau debu yang mengandung logam berat yang dilepas ke lingkungan. Satu gram U-235 setara dengan 2650 batu bara. Oleh karena itu PLTN merupakan pembangkit listrik yang ramah lingkungan. Limbah radioaktif yang dihasilkan dari pengoperasian PLTN, adalah berupa elemen bakar bekas dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa disimpan dilokasi PLTN, sebelum dilakukan penyimpanan secara lestari. Prinsip kerja dari PLTU 2. Proses pemanfaatan panas hasil fisi untuk menghasilkan energi listrik di dalam PLTN adalah sebagai berikut Ø Bahan bakar nuklir melakukan reaksi fisi sehingga dilepaskan energi dalam bentuk panas yang sangat besar. Ø Panas hasil reaksi nuklir tersebut dimanfaatkan untuk menguapkan air pendingin, bisa pendingin primer maupun sekunder bergantung pada tipe reaktor nuklir yang digunakan. Ø Uap air yang dihasilkan dipakai untuk memutar turbin sehingga dihasilkan energi gerak kinetik. Ø Energi kinetik dari turbin ini selanjutnya dipakai untuk memutar generator sehingga dihasilkan arus listrik. 3. Keuntungan dan kekurangan Keuntungan PLTN dibandingkan dengan pembangkit daya utama lainnya adalah Ø Tidak menghasilkan emisi gas rumah kaca selama operasi normal - gas rumah kaca hanya dikeluarkan ketika Generator Diesel Darurat dinyalakan dan hanya sedikit menghasilkan gas. Ø Sedikit menghasilkan limbah padat selama operasi normal. Ø Biaya bahan bakar rendah - hanya sedikit bahan bakar yang diperlukan. Ø Ketersedian bahan bak ar yang melimpah - sekali lagi, karena sangat sedikit bahan bakar yang diperlukan. Kekurangan dari PLTN Ø Risiko kecelakaan nuklir - kecelakaan nuklir terbesar adalah kecelakaan Chernobylcontainment building yang tidak mempunyai. Ø Limbah Nuklir - limbah radioaktif tingkat tinggi yang dihasilkan dapat bertahan hingga ribuan tahun. BAB IV KESIMPULAN DAN SARAN A. KESIMPULAN Prinsip kerja PLTN berdasarkan sumber panas yang dihasilkan oleh suplai panas dari reaksi nuklir. Pemanfaatan energy panas tersebut tidak dapat dihasilkan apabila kurangnya bahan bakar. Adapun jenis PLTN yang ada di Bumi, merupakan pengembangan dari kemajuan teknologi yang ada. Oleh karena itu, banyak terjadi perkembangan pembangkit energy listrik yang baru. B. SARAN 1. Pengembangan PLTN di Indonesia sangat penting bagi kemajuan ekonomi bagi Negara tersebut. 2. Sebaiknya pengembangan PLTN dibuat berdasarkan kebutuhan. 3. Oleh karena itu, pemerintah mampu menyokong dalam pengembangan PLTN di Indonesia. .
SEJARAHPEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN) DI INDONESIA. Dalam dokumen Makalah Energi Nuklir (Halaman 29-34) Sejarah pemanfaatan energi nuklir melalui Pusat Listrik Tenaga Nuklir (PLTN) dimulai beberapa saat setelah tim yang dipimpin Enrico Fermi berhasil memperoleh reaksi nuklir berantai terkendali yang pertama pada tahun 1942.
Pembangkit Listrik Tenaga Nuklir – Pemanfaatan teknologi nuklir di bidang non-energi telah banyak digunakan, seperti pada bidang industri, kesehatan, pertanian, peternakan, sterilisasi produk farmasi dan alat kedokteran, pengawetan bahan makanan, serta hidrologi. Akan tetapi penggunaan potensi nuklir sebagai penghasil energi, khususnya listrik belum dilakukan secara maksimal. Salah satu alasannya adalah ketakutan masyarakat mengenai bahaya radiasi yang ditimbulkan oleh nuklir. Padahal memanfaatkan tenaga nuklir sebagai sumber energi relatif memberikan banyak keuntungan, karena lebih murah, aman dan tidak mencemari lingkungan. Pengertian PLTNSejarah PLTNCara Kerja PLTNReaktor Nuklir1. Reaktor Fisi2. Reaktor FusiKelebihan PLTNKekurangan PLTNPerkembangan Nuklir di Indonesia1. Keberadaan Uranium Masih Belum Terbukti2. PLTN Bukanlah Energi Murah3. Risiko Besar4. Masalah Limbah5. Opsi Terakhir6. Masalah PLTN Sangat Kompleks Pengertian PLTN Pembangkit Listrik Tenaga Nuklir PLTN adalah pembangkit listrik termal yang menggunakan reaktor nuklir untuk menghasilkan panas. PLTN merupakan pembangkit daya yang dapat bekerja dengan baik ketika daya keluarannya konstan, meskipun reaktor didih air dayanya dapat turun hingga setengah ketika malam hari. Daya yang mampu dihasilkan per unit sekitar 12 MWe sampai 1400 MWe. Sejarah PLTN Pembangkit Listrik Tenaga Nuklir yang pertama kali menyalakan bola lampu adalah reaktor Grafit X-10 di Oak Ridge, Tennessee, Amerika Serikat pada 3 September 1948. Kemudian pada tanggal 20 Desember 1951, stasiun pembangkit percobaan kedua dibuat dengan skala yang lebih besar, yaitu EBR-I. Stasiun PLRN ini berada di dekat Arco, Idaho, Amerika Serikat. Sedangkan PLTN pertama di dunia yang berhasil memproduksi listrik untuk power grid mulai beroperasi pada tanggal 27 Juni 1954 di Obninsk, Uni Soviet. Sementara PLTN Komersil pertama adalah Calder Hall yang terletak di Inggris dan dibuka pada 17 Oktober 1956. Selain ditujukan untuk memproduksi listrik, Calder Hall juga dibangun untuk menghasilkan plutonium. Pembangkit listrik Shippingport yang terletak di Amerika Serikat, dibangun dan mulai terhubung ke jaringan pada tanggal 18 Desember 1957. Cara Kerja PLTN Pembangkit listrik tenaga nuklir mengekstraksi energi dari inti atom melalui pembagian fisi nuklir. Pada atom terdapat ikatan internal yag menyatukan subpartikel, yaitu elektron, neutron, dan proton. Saat dibagi, ikatan tersebut terpecah dan akan melepaskan energi dalam atom yang mengikat partikel yang terpisah. Kemudian sebuah neutron ditembakkan ke atom dari unsur kimia besar. Partikel kecil pada kecepatan tertentu akan menghancurkan atom menghancurkan nukleusnya yang terbentuk dari neutron dan proton yang dihubungkan dengan ikatan yang energik. Proses ini terjadi dalam reaksi nuklir eksotermik yang melepaskan banyak energi dalam bentuk panas. Energi panas yang dikeluarkan kemudian digunakan untuk memanaskan air hingga menguap. Uap tersebut digunakan untuk memutar turbin yang selanjutnya akan menghasilkan listrik yang kita gunakan dalam kehidupan sehari-hari. Reaktor Nuklir Umumnya PLTN dikelompokan dari jenis reaktor yang digunakan. Namun ada beberapa PLTN menggunakan jenis reaktor yang berbeda karena menerapkan unit-unit independen. Berikut ini adalah beberapa jenis reaktor nuklir, antara lain 1. Reaktor Fisi Reaktor fisi adalah reaktor yang menghasilkan panas menggunakan reaksi fisi nuklir dari isotop fissil uranium serta plutonium. Reaktor daya fisi dikelompokkan sebagai berikut Reaktor Thermal Reaktor Thermal adalah reaktor yang menggunakan moderator neuron untuk melambatkan neutron sehingga mereka bisa menghasilkan reaksi fisi selanjutya. Melalui reaksi tersebut dihasilak neutron yang memiliki energi tinggi dan harus diturunkan atau dilambatkan oleh moderator, sehingga reaksi berantai dapat berlangsung. Hal ini harus dilakukan karena jenis bahan bakar yang diperlukan oleh reaktor termal untuk melakukan reaksi fisi adalah menggunakan neutron lambat. Reaktor Cepat Reaktor Cepat dapat menjaga reaksi berantai tanpa memerlukan moderator neuron. Hal tersebut disebabkan karena jenis bahan bakar yang digunakan dalam reaktor cepat berbeda dengan reaktor termal. Neutron yang diproduksi oleh reaktor cepat tidak perlu dilambatkan. Bisa dikatakan juga bahwa reaktor termal menggunakan neutron termal sedangkan reactor cepat menggunakan neutron cepat dalam masing-masing proses reaksi fisi. Reaktor Subkritis Reaktor subkritis adalah reator yang menggunakan sumber neutron luar dan dan tidak menggunakan reaksi berantai dalam melakukan proses reaksi fisi. Namun hingga tahun 2004 reaktor ini hanya berupa konsep teori. Meskipun sudah ada beberapa laboratorium yang mengadakan demontrasi dan uji kelayakan, tapi belum ada reaktor yang dibangun untuk menghasilkan listrik. 2. Reaktor Fusi Reaktor fusi merupakan teknologi reaktor nuklir yang masih dalam tahap eksperimental dan pengembangan. Secara umum, jenis reaktor PLTN ini menggunakan hidrogen sebagai bahan bakar. Kelebihan PLTN Nuklir merupakan salah satu energi dengan kekuatan tinggi untuk menghasilkan daya yang luar biasa. Tak heran jika terdapat berbagai macam kelebihan dalam menggunakan PLTN, antara lain Tidak memerlukan lahan yang luas. PLTN tidak memerlukan area yang lebar untuk pembangunan pembangkit. Berbeda dengan PLTA yang harus berada di area yang Fleksibel. Untuk proses pendinginan, PLTN dapat diletakkan di pesisir pantai. Sebab di area tersebut banyak terdapat air. Peletakkannya juga harus disesuaikan agar tidak mengganggu ketersediaan air karbon rendah. PLTN tidak turut dalam emisi memproduksi partikel polutan. Untuk urusan pencemaran udara, PLTN merupakan pembangkit yang dapat diandalkan sebagai anti polutan. Berbeda dengan thermal berbahan fosil yang berkontribusi terhadap naiknya polutan yang ada di yang dihasilkan padat. Intensitas nuklir memiliki energi yang tinggi. Energi padat yang dihasilkan ini juga tidak membutuhkan banyak bahan nuklir reliable karena tidak tergantung akan sampahnya relatif sedikit. Tetapi limbah yang dihasilkan sifatnya radioaktif. Kekurangan PLTN Dibalik banyaknya kelebihan yang ditawarkan PLTN, ada sejumlah kekurangan yang dimilikinya. Kekurangan inilah yang menimbulkan sejumlah pro dan kontra jika diterapkan di Indonesia, yaitu Pembuangan energi nuklir memerlukan tempat khusus, sebab limbah yang dihasilkan bersifat radioaktif yang efeknya sangat buruk bagi lingkungan. Oleh sebab itu, butuh perawatan khusus untuk menangani limbah-limbah yang sifatnya yang sudah tidak beroperasi tidak dapat ditinggalkan begitu saja. Proses decomissioning memerlukan waktu yang lama dengan biaya yang besar untuk mencegah paparan yang menyebabkan kecelakaan nuklir. Kecelakaan tersebut bukanlah perkara sepele. Sebab radiasinya dapat merusak sel-sel tubuh dan berpotensi menyebabkan sejumlah penyaki, mulai dari leukimia, janin gagal tumbuh, hingga terjadi ledakan, perlu waktu sangat lama untuk recovery. Pemulihan pun tidak hanya di area PLTN, melainkan lingkungan yang terpapar radiasi nuklir. Kerugian yang dihasilkan jika peristiwa tersebut terjadi tentu tidaklah sedikit. Perkembangan Nuklir di Indonesia Sebagai energi yang digadang-gadang lebih hemat dan tahan lama, pengembangan PLTN menuai pro dan kontra dalam pembangunannya. Mengapa pembangunan pembangkit listrik satu ini masih sangat jarang di Indonesia? Berikut ini beberapa alasannya, antara lain 1. Keberadaan Uranium Masih Belum Terbukti Anggota Dewan Energi Nasional, Rinaldy Dalimi mengemukakan bahwa saat ini masyarakat masih salah kaprah perihal uranium di Indonesia. Banyak anggapan yang beredar bahwa Indonesia masih sangat kaya akan sumber daya ini. Padahal bukti valid mengenai keberadaannya belum ada. Rinaldy Dalimi mengatakan bahwa data uranium yang dapat digunakan untuk 130 tahun mendatang itu tidak benar. Dari data adanya sumber bahan baku PLTN yang belum jelas saja sudah cukup menjadi alasan mengapa PLTN masih jarang digunakan di Indonesia. 2. PLTN Bukanlah Energi Murah Standar dalam pembangunan PLTN sangatlah tinggi. Hal ini bukanlah tanpa alasan, mengingat jika terjadi error maka dapat berakibat sangat fatal. Berkaca dari meledaknya PLTN yang ada di Fukushima, Jepang, pembangunan PLTN dengan standar keamanan dan kelayakan tidaklah murah. Belum lagi apabila jika ada perbaikan yang membutuhkan biaya tidak sedikir. Seperti yang dialami oleh PLTN Fukushima, biaya perbaikan pasca meledak mencapai 600 miliar rupiah. Biaya tersebut menjadikan pembangkit listrik jenis ini bukanlah sumber energi yang murah. 3. Risiko Besar Rinaldy Dalimi menuturkan bahwa pembangunan proyek PLTN memiliki sejumlah bahaya. Salah satunya adalah ketika terjadi ledakan karena sistemnya yang error. Orang-orang tidak boleh mendekat di sekitar area hingga radius tertentu. Belum lagi masalah kesehatan yang menjadi momok menakutkan apabila terjadi ledakan di PLTN. Berkaca pada tragedi yang ada di Fukushima Jepang 2011, bisa kesimpulan bahwa jika ada pembangkit listrik dengan risiko minim, mengapa harus mengambil yang risiko besar. 4. Masalah Limbah PLTN juga dinilai menghasilkan limbah lebih banyak dibandingkan jenis pembangkit listrik lain, seperti PLTA. Limbah yang dihasilkan berpotensi membahayakan hajat hidup masyarakat, terutama yang berada di sekitar area PLTN. Limbah dari PLTN harus dipendam terlebih dahulu selama 100 tahun, kemudian baru terurai. Indonesia masih belum begitu siap dalam menangani persoalan limbah. Tentu saja jika PLTN beroperasi, permasalahan yang ditimbulkan akan bertambah dan semakin kompleks. 5. Opsi Terakhir Pembangunan PLTN berpotensi menyedot dana yang tidak sedikit. Seperti yang dijelaskan sebelumnya bahwa energi nuklir tidaklah murah. Jika pemerintah harus mengimpor uranium, Badan Tenaga Nuklir Nasional atau Batan belum berpengalaman. Oleh sebab itu, energi nuklir menjadi pilihan terakhir untuk digunakan. Dalam diskusi Energi Kita, Rinaldy selaku anggota DEN memberikan kesimpulan bahwa nuklir menjadi pilihan terakhir apabila sumber daya lain sudah tidak lagi mencukupi. 6. Masalah PLTN Sangat Kompleks Persoalan pembangunan Pembangkit Listrik Tenaga Nuklir sangatlah kompleks. Hal ini dituturkan oleh Direktur Eksekutif Institute for Essential Services Reform, Fabby Tumiwa. Persoalan dalam pembangunan PLTN tidak hanya melibatkan satu pihak, melainkan berbagai macam pihak. Butuh semacam deal politik, subsidi serta insentif pemerintah. Karena biaya pembangunannya yang tinggi, subsidi yang diperlukan tentulah tidak sedikit. Belum lagi pengalaman sumber daya manusia Indonesia yang masih belum tinggi dalam mengurusi energi nuklir. Tentu saja untuk kedepan, diharapkan Indonesia memiliki pembangkit listrik ramah lingkungan yang tidak membuat banyak problem kompleks.
Semogamakalah yang berjudul "Pembangkit Listrik Tenaga Surya (PLTS)" ini bermanfaat. Akhir kata kami mengucapkan terimakasih. Untuk beberapa pembangkit listrik tenaga nuklir, siklus hidup beberapa emisi gas rumah kaca yang dihasilkan, termasuk energi yang dibutuhkan untuk menambang uranium dan energi pembangunan pembangkit listrik
sumberenergi dwirahmawati41, pembangkit listrik tenaga surya di indonesia alamendah s, matahari sebagai sumber energi dunia, pemanfaatan air laut sebagai sumber listrik pembangkit energi, pena ku makalah sumber daya energi, young wild amp free makalah energi alternatif, keep calm and study amp work hard energi
PLTP(Pembangkit Listrik Tenaga Panas Bumi) pada pengoperasiannya sama sekali tidak menghasilkan gas karbon sehingga benar benar ramah terhadap lingkungan, hal seperti inilah yang diharapkan oleh masyarakat dari berbagai penjuru dunia. PLTP pertama di Indonesia yang saat ini tengah beropersi adalah di Kamojang Garut Jawa Barat yang dibangun
PembangkitListrik Tenaga Nuklir (PLTN) adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih reaktor nuklir pembangkit listrik. PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari).
Jakarta - Pembangkit listrik tenaga nuklir komersial pertama mulai beroperasi pada 1950-an. Dewasa ini, energi nuklir menyediakan 10 persen listrik dunia dari sekitar 440 reaktor sendiri adalah sumber tenaga paling rendah karbon kedua di dunia hanya 26 persen dari total karbon pada tahun 2020. Lebih dari 50 negara telah memanfaatkan energi nuklir dari sekitar 220 reaktor riset. Selain penelitian, reaktor tersebut digunakan untuk produksi isotop medis dan industri serta keperluan 2021, sebanyak 13 negara menghasilkan setidaknya seperempat listrik mereka dari nuklir. Prancis mendapatkan sekitar 70 persen listriknya dari energi nuklir, sementara Ukraina, Slovakia, Belgia, dan Hongaria mendapatkan sekitar setengahnya dari nuklir. Jepang sebelumnya pernah mengandalkan tenaga nuklir untuk lebih dari seperempat pasokan listrik mereka, tetapi sempat menurun dan diperkirakan bakal kembali mendekati level jaringan transmisi regional, lebih banyak negara juga menggantungkan sebagian pada tenaga nuklir. Italia dan Denmark misalnya, dua negara ini mendapat hampir 10 persen listriknya dari tenaga nuklir akan Kapasitas Pembangkit BaruJelas ada kebutuhan akan kapasitas pembangkit nuklir baru di seluruh dunia, baik untuk menggantikan unit bahan bakar fosil lama—terutama batu bara penghasil banyak karbon dioksida—dan memenuhi permintaan listrik yang meningkat di banyak negara. Pada 2020, 61 persen listrik masih dihasilkan dari pembakaran bahan bakar fosil. Walau ada dukungan kuat dan pertumbuhan untuk sumber listrik terbarukan intermiten dalam beberapa tahun terakhir, kontribusi bahan bakar fosil untuk pembangkit listrik tidak berubah secara signifikan dalam 15 tahun terakhir 66,5 persen pada 2005.Badan Energi Internasional OECD Organisation for Economic Co-operation and Development menerbitkan skenario tahunan terkait energi. Dalam World Energy Outlook 20221, terdapat Net Zero Emissions NZE by 2050 Scenario yang memetakan cara untuk mencapai stabilisasi 1,5 derajat celsius dalam peningkatan suhu rata-rata global di samping akses universal ke energi modern per 2030. Kemudian, NZE di WEO 2022 melihat peningkatan kapasitas nuklir menjadi 871 GWe GWe = satuan energi gigawatt electrical pada 2050 Nuklir DuniaSemua bagian dunia pada dasarnya terlibat dalam pengembangan tenaga nuklir. Kondisi nuklir di berbagai negara dapat diuraikan sebagai memiliki 19 reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 13,6 GWe. Pada 2021, nuklir telah menghasilkan 14,3 persen listrik negara. Semua kecuali satu dari 19 reaktor nuklir negara itu berlokasi di Ontario. Sepuluh dari unit tersebut—enam di Bruce dan empat di Darlington—akan menjalani perbaikan. Program ini akan memperpanjang masa operasi hingga 30–35 tahun. Pekerjaan pemugaran serupa memungkinkan Ontario untuk menghapus batu bara secara bertahap sejak 2014, mencapai salah satu campuran listrik terbersih di memiliki dua reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 1,6 GWe. Pada 2021, nuklir menghasilkan 5,3 persen listrik Serikat AS memiliki 93 reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 95,8 GWe. Pada 2021, nuklir menghasilkan 19,6% listrik negara. Ada empat reaktor AP1000 yang sedang dibangun, tetapi dua di antaranya telah dibatalkan. Salah satu alasan jeda dalam bangunan baru di AS hingga saat ini adalah evolusi yang sangat sukses dalam strategi pemeliharaan. Selama 15 tahun terakhir, peningkatan kinerja operasional telah meningkatkan utilisasi pembangkit listrik tenaga nuklir AS dengan peningkatan output setara dengan 19 pembangkit 1000 MWe megawatt electric baru yang sedang dibangun. Tahun 2016 melihat reaktor tenaga nuklir baru pertama memasuki operasi di negara itu selama 20 tahun terakhir. Meski demikian, jumlah reaktor yang dapat dioperasikan telah berkurang hingga 104 buah pada 2012. Pensiun dini disebabkan oleh kombinasi faktor-faktor termasuk gas alam yang murah, liberalisasi pasar, subsidi berlebihan dari sumber terbarukan, dan kampanye memiliki tiga reaktor dengan kapasitas bersih gabungan sebesar 1,6 GWe. Pada 2021, negara tersebut menghasilkan 7,2 persen listriknya dari memiliki dua reaktor, dengan kapasitas bersih gabungan sebesar 1,9 GWe. Pada 2021, nuklir menghasilkan 2,4 persen listrik Barat dan TengahBelgia memiliki tujuh reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 5,9 GWe. Pada 2021, nuklir menghasilkan 50,8 persen listrik memiliki lima reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 4,4 GWe. Pada 2021, nuklir menghasilkan 32,8 persen listrik negara. Reaktor kelima Finlandia, EPR 1600 MWe bersih, dihubungkan ke jaringan listrik pada Maret memiliki 56 reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 61,4 GWe. Pada 2021, nuklir menghasilkan 69 persen listrik negara. Kebijakan energi 2015 bertujuan untuk mengurangi ekspor nuklir menjadi 50 persen pada 2025, tetapi kemudian ditunda hingga 2035. Kementerian Energi Prancis mengatakan bahwa target tersebut tidak realistis dan akan meningkatkan emisi karbon dioksida negara tersebut, membahayakan keamanan pasokan, serta menaruh risiko pekerjaan. Satu reaktor saat ini sedang dibangun di Prancis, yakni EPR 1750 MWe di memiliki satu reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih 0,5 GWe. Pada 2021, nuklir menghasilkan 3,1 persen listrik memiliki tujuh reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 7,1 GWe. Pada 2021, nuklir menghasilkan 20,8 persen listrik memiliki enam reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 6,9 GWe. Pada 2021, nuklir menghasilkan 30,8 persen listrik negara. Swedia menutup beberapa reaktor yang lebih tua, tetapi banyak berinvestasi dalam operasi perpanjangan dan peningkatan masa memiliki empat reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 3 GWe. Pada 2021, nuklir menghasilkan 28,8 persen listrik Raya memiliki sembilan reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 5,9 GWe. Pada 2021, nuklir menghasilkan 14,8 persen listrik negara. Makalah energi Pemerintah Inggris pada 2006 mendukung penggantian armada reaktor nuklir negara yang sudah tua dengan pembangunan nuklir baru. Konstruksi telah dimulai pada pabrik generasi baru yang Eropa Tengah dan TimurArmenia memiliki satu reaktor tenaga nuklir dengan kapasitas bersih 0,4 GWe. Pada 2021, nuklir menghasilkan 25,3 persen listrik memiliki dua reaktor tenaga nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 2,2 GWe. Hampir semua sisa listrik negara dihasilkan dari gas alam. Pada 2021, nuklir menghasilkan 14,1 persen listrik memiliki dua reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 2 GWe. Pada 2021, nuklir menghasilkan 34,6 persen listrik Ceko memiliki enam reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 3,9 GWe. Pada 2021, nuklir menghasilkan 36,6 persen listrik memiliki empat reaktor nuklir yang dapat dioperasikan, dengan kapasitas bersih gabungan sebesar 1,9 GWe. Pada 2021, nuklir menghasilkan 46,8 persen listrik memiliki dua reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 1,3 GWe. Pada 2021, nuklir menghasilkan 18,5 persen listrik memiliki 37 reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 27,7 GWe. Pada 2021, nuklir menghasilkan 20 persen listrik negara. Keputusan pemerintah pada 2016 menetapkan pembangunan 11 reaktor tenaga nuklir baru pada 2030. Pada awal 2022, Rusia memiliki tiga reaktor yang sedang dibangun dengan kapasitas gabungan sebesar 2,6 GWe. Kekuatan industri nuklir Rusia tercermin dari dominasinya di pasar ekspor reaktor baru. Industri nuklir nasional negara tersebut saat ini terlibat dalam proyek reaktor baru di Belarusia, China, Hungaria, India, Iran, dan Turki, serta terlibat sebagai investor di Aljazair, Bangladesh, Bolivia, India, Yordania, Kazakhstan, Nigeria, Afrika Selatan, Tajikistan, dan memiliki empat reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 1,8 GWe. Pada 2021, nuklir menghasilkan 52,3 persen listrik negara. Dua unit lainnya saat ini sedang memiliki satu reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih 0,7 GWe. Pada 2021, Slovenia menghasilkan 36,9 persen listriknya dari memiliki 15 reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 13,1 GWe. Pada 2021, nuklir menghasilkan 55 persen listrik negara. Turki memulai pembangunan pembangkit listrik tenaga nuklir pertamanya pada April 2018 dengan perkiraan mulai beroperasi pada memulai konstruksi pertama dari dua reaktor VVER-1200 Rusia yang direncanakan pada 2017. Konstruksi yang kedua dimulai pada 2018. Unit pertama direncanakan akan beroperasi pada 2023. Bangladesh saat ini masih memproduksi hampir semua listriknya dari bahan bakar memiliki 55 reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 53,3 GWe. Pada 2021, nuklir menghasilkan 5 persen listrik negara. China terus mendominasi pasar untuk pembangunan nuklir baru dengan 21 reaktor sedang dibangun per akhir Juli 2022. Pada 2018, China menjadi negara pertama yang menugaskan dua desain baru, yakni AP1000 dan EPR. Negara itu memasarkan Hualong One untuk ekspor, desain reaktor yang sebagian besar buatan dalam negeri. Dorongan kuat untuk mengembangkan tenaga nuklir baru di China berasal dari kebutuhan untuk meningkatkan kualitas udara perkotaan dan mengurangi emisi gas rumah memiliki 22 reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 6,8 GWe. Pada 2021, nuklir menghasilkan 3,2 persen listrik negara. Pemerintah India berkomitmen untuk meningkatkan kapasitas tenaga nuklirnya sebagai bagian dari program pembangunan infrastruktur besar-besaran. Pemerintah pada 2010 menetapkan target yang ambisius untuk memiliki kapasitas nuklir online sebesar 14,6 GWe pada 2024. Per akhir Juli 2022, delapan reaktor sedang dibangun di India dengan kapasitas gabungan sebesar 6,7 memiliki 33 reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 31,7 GWe. Pada Maret 2022, 10 reaktor telah dihidupkan kembali dengan 15 lainnya dalam proses persetujuan, menyusul kecelakaan Fukushima pada 2011 silam. Di masa lalu, 30 persen listrik negara berasal dari nuklir. Namun pada 2021, angkanya menurun hingga 7,2 Selatan memiliki 25 reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 24,4 GWe. Pada 2021, nuklir menghasilkan 28 persen listrik negara. Korea Selatan memiliki tiga reaktor baru yang sedang dibangun di dalam negeri dan sedang membangun pabrik empat unit di Uni Emirat memiliki enam reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 3,3 GWe. Pada 2021, nuklir menghasilkan 10,6 persen listrik negara. Pakistan memiliki satu unit China “Hualong One” yang sedang dibangun, mencapai tingkat kritis pertama pada Februari memiliki satu reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih 0,9 GWe. Pada 2021, nuklir menghasilkan 1 persen listrik negara. Unit VVER-1000 kedua rancangan Rusia saat ini sedang Emirat Arab memiliki tiga reaktor nuklir yang dapat dioperasikan dengan kapasitas 4 GWe. Unit keempat sedang dibangun di pabrik yang sama Barakah. Pada 2021, nuklir menghasilkan 1,3 persen listrik memulai konstruksi pada Juli 2022 dari empat unit VVER pertama rancangan Rusia yang akan dibangun di situs El Dabaa, dekat Pantai Mediterania. Unit kedua telah mulai dibangun pada November 2022. Keempat reaktor diharapkan beroperasi pada Selatan memiliki dua reaktor nuklir yang dapat dioperasikan dengan kapasitas bersih gabungan sebesar 1,9 GWe, menjadikan mereka satu-satunya negara Afrika yang saat ini memproduksi listrik dari nuklir. Pada tahun 2021, nuklir menghasilkan 6 persen listrik negara. Afrika Selatan tetap berkomitmen pada rencana kapasitas lebih lanjut, tetapi terkendala oleh pembiayaan yang cukup memiliki pengalaman dan infrastruktur yang lebih mendalam dalam teknologi nuklir dibandingkan dengan negara lain di Asia Tenggara. Reaktor tenaga nuklir eksperimental 10 MWe direncanakan bakal dibangun di Serpong, Banten. Desain konseptual telah diselesaikan oleh Rusia. Sementara itu, rencana untuk unit yang lebih besar tertunda untuk pertimbangan lebih lanjut pada 2045 editor Rusia Minati Pengembangan PLTN RI, ESDM Kebutuhan Nuklir Baru Dimulai 2040SYAHDI MUHARRAM